Схема зарядного устройства для аккумулятора

Данное зарядное устройство способен собрать любой начинающий, а все эти детали можно достать с любого старого приемника или другой электронной аппаратуры. Диоды, резисторы и конденсаторы так вообще е должно возникнуть проблем, ну а вот на счет микросхемы – ее нужно поискать или купить на радио рынке, она не дорогая. Микросхема работает при напряжении до 40 вольт и 1,5 Ампер, а это на выходе получается аж 60 ват. Но чтобы получить такую мощность, ваш трансформатор должен быть как минимум 60 ват отдавать на выходе со вторичной обмотки, а так же диодный мост должен выдерживать такую мощность, то есть должен быть рассчитан на напряжение 40 вольт и ток не менее 1,5 ампера. Самое вот основное что стоило сказать по схеме.

И еще стоит добавить, что выходная мощность будет зависеть от того, какую микросхему вы поставите – смотрите по каталогу. Соответственно можно поставить любую микросхему, которая будет стабилизировать ток, но каждая стабилизирует разный по величине ток и разное напряжение. Как правило выше 1,5-2 ампер не могут такие микросхемки состабилизировать ток, а если вам на выходе нужны большие токи до 10-20 ампер, то нужно ставить параллельно соединенные транзисторы, которые будут усиливать ток на выходе с микросхемы, который будет зависеть от количества соединенных транзисторов параллельно, ну и конечно же от питающего источника питания и диодного моста – его мощности. Ну вот и все из основного.

Принципиальная схема:

zaradka-shema-2-

Другие варианты зарядных, которые отлично себя зарекомендовали:

zaradka-shema-5-

zaradka-shema

С увеличением тока, за счёт дополнительного транзистора:

zaradka-shema-4-

Давайте теперь поговорим о каждой детали зарядных устройств на LM317 отдельно и для чего она нужна, какая ее роль. Начнем непосредственно с сети и первичной обмотки трансформатора. С первичной обмотки трансформатора или как ее еще называют сетевой обмоткой – два провода выводят в вилку которая включатся в сеть. На фазный провод последовательно ставят предохранитель примерно на 0,5 ампер и ключ (тумблер). Предохранитель состоит из стеклянной колбочки и внутри которой находится волосок тоненький, который перегорает при превышении заданной величины тока, в данном случае это 0,5 ампер. Это относятся к аппаратам защиты.

Тумблер состоит из подвижных контактов и не подвижных. При замкнутом положении подвижные контакты соприкасаются с не подвижными и ток по цепи протекает, когда ручка тумблера в выключенном положении, то контакты разомкнуты и по цепи ток не проходит и напряжение не подается на схему. Это очень удобно, так как не нужно вилку то включать в сеть, то доставать с сети. Относятся тумблер к аппаратам управления. Первичная и вторичная обмотка имеет индуктивную связь и имеют магнитопровод, который собран из отдельных листов электротехнической стали. Магнитопровод проводит магнитный поток, а обычный проводник – ток. Магнитопровод собран из отдельных листов, чтобы уменьшить потери на вихревые токи.

И так, вторичной обмоткой мы снимаем напряжение и ток: за напряжение отвечает длинна провода, а за ток – диаметр, так что можете пермотать вторичку, если это необходимо, но чем выше напряжение захотите сделать, тем меньше ток сможете взять на выходе. Вот у вас если первичная обмотка может дать 50 ват, то вы при 5-ти вольтах получите 50/5=10 Ампер, а при 10 вольтах получите 50/10=5 ампер, соответственно при 50 вольтах на выходе ток будет 1 ампер, а при 100 вольтах ток составит 500 мА (0,5 А). Переменное напряжение со вторичной обмотки подаем на диодный мост, который выпрямляет ток или другими словами преобразовывает переменный ток в постоянный.

Советую купить этот диодный мост, так как он меньше, чем вы соберет сами из диодов и купленный мост легче установить на радиатор, чем каждый диод устанавливать на радиатор. Учтите, что диодный мост (каждый диод) должен рассчитан быть на заданное напряжение и нужный ток, в противном случае диодный мост будет сильно греться так не обеспечив вашу схему нужным током. Позаботьтесь об этом заранее. Это основная часть блока питания – силовая часть. Теперь перейдем к самой схемке – это все что после диодного моста.

zaradka-shema-1-

Конденсатор электролит на 2200 мкф на напряжение 64 вольта. Емкость можно поставить и больше – лучше будет убирать пульсации сети. Далее мы видим светодиод включенный последовательно с резистором. Резистор служит в качестве ограничителя по току для светодиода. Было бы напряжение в 2 раза меньше, то и резистор установили бы тоже в два раза меньше по сопротивлению. Далее стоит керамический конденсатор на 0,1 микрофарат, который убирает пульсации более высоких частот, чем конденсатор электролит большой емкости. Кстати, если поставить очень много конденсаторов электролитов, общая емкость которых составит более 100 000 мкф, то можно вообще отказаться от стабилизатора. Теперь далее мы видим микросхему, у нее три ноги. Одна нога вход, вторая выход, а третьей ногой управляем коэффициентом усиления по напряжению – очень похоже на транзистор и его управление. Резистором Р1 мы управляем током, а значит управляем на выходе микросхемы напряжением. Резистор R2 и диод Д1 служит в качестве обратной связи.

Далее видим конденсатор не большой емкости электролитический, который убирает пульсации. Далее поставьте просто вольтметр на выходе и можно еще поставить амперметр последовательно в цепь, чтобы следить за током потребления. Когда ток потребления будет доходить до 1-1,5 ампера, то будите сразу знать, что микросхема греться, ведь она не должна нагреваться выше, чем 125 градусов. Установите это все в коробочку, выведите провода, светодиод, амперметр, вольтметр и пользуйтесь. Коробочку можно сделать самостоятельно, а можно найти уже готовую. Если будите делать самостоятельно: берем картон толстый и режем заготовки. Сверлим много мелких дырочек для радиатора, чтобы меньше грелся.

Если радиатор будет сильно греться, то можно установить кулер, который будет питаться от самого же блока питания. Тогда, на верхнюю стенку крепим куллер, а на нажнюю радиатор. Дырки должны быть сделаны и с верху (чтобы куллеру брать воздух), и снизу (чтобы выдувать теплый воздух). Установили радиатор с куллером, теперь склеиваем детали и делаем коробочку в виде прямоугольника. Включаем вилку в сеть и щелкаем тумбер – загорается светодиод, значит блок питания работает верно. Теперь можете регулировать нужное вам напряжение, показания которого видим на вольтметре и подключаем аппаратуру и следим за током. Нормальный ток будет в пределах 0,5-0,8 Ампер. И не забудьте микросхему установить на радиатор! Ну если конечно вы не будите работать при токе 200-250 мА.

А теперь о доработке схемы питания. Первым делом лучше всего установить еще один конденсатор – электролит на 6000 микрофарад – он уберет пульсации окончательно. Поставьте предохранитель на 1,5 Ампера – он защитит микросхему от перегрева при коротких замыканиях. Чтобы убрать помехи из сети, например работающей дрели, сварочного аппарата и так далее, установите на плюс сразу после диодного моста дросель. Возьмите ферритовый магнитопровод и намотайте на нем медную поволоку. При прохождении ока по такой катушке, на выходе ее уже не будет высокочастотных помех – дросель все уберет.