Подготовка асинхронного электродвигателя к включению

Виды электродвигателей

На самом первом этапе нам следует определиться с типом двигателя, который мы собрались подключать. Это может быть трехфазный асинхронный двигатель с короткозамкнутым или фазным ротором, двух- или однофазный двигатель, а может быть и вовсе синхронная машина.

Помочь в этом может бирка на электродвигателе, на которой указана нужная информация. Иногда это можно сделать чисто визуально — так как мы рассматриваем подключение трехфазных электрических машин, то двигатель с короткозамкнутым ротором не имеет коллектора, а машина с фазным ротором имеет таковой.

Определение начала и конца обмотки

Трехфазный асинхронный электродвигатель имеет шесть выводов. Это три обмотки, каждая из которых имеет начало и конец.

Для правильного подключения мы должны определить начало и конец каждой обмотки. Существует множество вариантов того, как это сделать — мы остановимся на наиболее простых из них, применимых в домашних условиях.

Обмотки статора электродвигателя
Обмотки статора электродвигателя

  • Для того чтоб определить начало и конец обмотки трехфазного двигателя своими руками, мы должны для начала определить выводы каждой отдельной обмотки, то есть определить каждую отдельную обмотку.
  • Сделать это достаточно просто. Между концом и началом одной обмотки у нас обязательно будет цепь. Определить цепь нам помогут либо двухполюсный указатель напряжения с соответствующей функцией, либо обычный мультиметр.
  • Для этого один конец мультиметра подключаем к одному из выводов и другим концом мультиметра касаемся поочередно остальных пяти выводов. Между началом и концом одной обмотки у нас будет значение близкое к нулю, в режиме измерения сопротивления. Между остальными четырьмя выводами значение будет практически бесконечным.
  • Следующим этапом будет определение их начала и конца.

ЭДС при различных вариантах соединения обмоток электродвигателя
ЭДС при различных вариантах соединения обмоток электродвигателя

  • Для того чтоб определить начало и конец обмотки, давайте немного погрузимся в теорию. В статоре электродвигателя имеется три обмотки. Если подключить конец одной обмотки к концу другой обмотки, а на начало обмоток подать напряжение, то в месте подключения ЭДС будет равен или близок к нулю. Ведь ЭДС одной обмотки компенсирует ЭДС второй обмотки. При этом в третьей обмотке ЭДС не будет наводиться.
  • Теперь рассмотрим второй вариант. Вы соединили один конец обмотки с началом второй обмотки. В этом случае ЭДС наводится в каждой из обмоток, в результате получается их сумма. За счет электромагнитной индукции ЭДС наводится в третьей обмотке.

Схема определения начала и конца обмоток электродвигателя
Схема определения начала и конца обмоток электродвигателя

  • Используя этот метод, мы можем найти начало и конец каждой из обмоток. Для этого к выводам одной обмотки подключаем вольтметр или лампочку. А любых два вывода других обмоток соединяем между собой. Два оставшихся вывода обмоток подключаем к электрической сети в 220В. Хотя можно использовать и меньшее напряжение.
  • Если мы соединили конец и конец двух обмоток, то вольтметр на третьей обмотке покажет значение близкое к нулю. Если же мы подключили начало и конец двух обмоток правильно, то, как говорит инструкция, на вольтметре появится напряжение от 10 до 60В (данное значение является весьма условным и зависит от конструкции электродвигателя).
  • Подобный опыт повторяем еще дважды, пока точно не определим начало и конец каждой из обмоток. Для этого обязательно подписывайте каждый полученный результат, дабы не запутаться.

Выбор схемы подключения электродвигателя

Практически любой асинхронный электродвигатель имеет два варианта подключения – это звезда или треугольник. В первом случае обмотки подключаются на фазное напряжение, во втором на линейное напряжение.

Электродвигатель асинхронный трехфазный и подключение звезда–треугольник зависит от особенностей обмотки. Обычно оно указано на бирке двигателя.

Номинальные параметры на бирке электродвигателя
Номинальные параметры на бирке электродвигателя

  • Прежде всего, давайте разберемся, в чем отличие этих двух вариантов. Наиболее распространенным является соединение «звезда». Оно предполагает соединение между собой всех трех концов обмоток, а напряжение подается на начала обмоток.
  • При соединении «треугольник» начало каждой обмотки соединятся с концом предыдущей обмотки. В результате каждая обмотка у нас получается стороной равностороннего треугольника – откуда и пошло название.

Разница между схемами соединения «звезда» и «треугольник»
Разница между схемами соединения «звезда» и «треугольник»

  • Отличие этих двух вариантов соединения состоит в мощности двигателя и условий пуска. При соединении «треугольником» двигатель способен развивать большую мощность на валу. В то же время момент пуска характеризуется большой просадкой напряжения и большими пусковыми токами.
  • В бытовых условиях выбор способа подключения обычно зависит от имеющегося класса напряжения. Исходя из этого параметра и номинальных параметров, указанных на табличке двигателя, выбирают способ подключения к сети.

Схема включения в сеть

С напряжениями и «звездами» разобрались, попробуем включить электродвигатель в сеть. Обычно это делают при помощи мощного реле – пускателя (контактора). Независимо от того, как соединены между собой обмотки, схема будет одна и та же.

Включение без возможности реверса

Начнем с обычного включения, когда нам не требуется реверс (обратное вращение). Взглянем на схему, она предельно проста:

Схема включения трехфазного двигателя в сеть с односторонним вращением

Как только мы включим автомат QF, напряжение с фазы «В» поступит на электромагнит пускателя КМ-1. Напряжение же с фазы «С» пройдет через нормально замкнутую кнопку «Стоп» и появится на одном из выводов нормально разомкнутой кнопки «Пуск». Электромагнит контактора обесточен, его силовые контакты разомкнуты, двигатель АД не работает.

Нажимаем на кнопку «Пуск». Контактор срабатывает, подключая двигатель к сети, и отдельным контактом управления КМ-1.1 шунтирует (закорачивает) эту кнопку, которую теперь можно отпустить.  Если мы хотим остановить двигатель, то нажимаем на кнопку «Стоп». Она снимает питание с электромагнита пускателя, тот в свою очередь снимает напряжение с мотора и одновременно разблокирует кнопку «Пуск». Кнопку «Стоп» можно отпустить.

Включение с реверсом

Для решения некоторых задач, к примеру, конвейер, кран-балка и т.п., требуется, чтобы двигатель вращался в обе стороны. Чтобы обеспечить обратное вращение, достаточно поменять местами фазы «А» и «С». Сделать это несложно, но понадобится еще один пускатель и кнопка на замыкание. Взглянем на схему ниже.

Итак, кнопа «Стоп» замкнута, кнопки «Вперед» и «Назад» разомкнуты. Оба контактора отключены, двигатель молчит. Предположим, мы нажмем на кнопку «Вперед». При этом сработает контактор КМ-1, запустит двигатель и заблокирует эту кнопку. Теперь остановим мотор кнопкой «Стоп» и нажмем «Назад». Включится нижний по схеме контактор КМ-2 и подаст напряжение на мотор, но при этом поменяет местами фазы «А» и «С». Ну и, естественно, эта кнопка будет заблокирована его контактами управления.

А теперь обратим внимание на нормально замкнутые  контакты КМ-1.2 и КМ-2.2. Они выполняют очень важную функцию. Если нажать на кнопку «Назад» в то время, когда мотор работает вперед (включен контактор КМ-1), то произойдет короткое замыкание между фазами «А» и «С». То же самое произойдет, если нажать на «Вперед», при включенном контакторе КМ-2.

Чтобы избежать подобной неприятности, и введены эти 2 цепи. Первая (КМ-1.2) размыкает цепь питания контактора КМ-2, когда включен КМ-1 и наоборот. Таким образом, оба контактора не смогут работать одновременно,  не выжгут нам линию и не сгорят сами.

Полезно! Практически все контакторы имеют как нормально замкнутые, так и нормально разомкнутые контакты управления, так что проблем со сборкой такой схемы не будет.

Нереверсивная схема управления асинхронного двигателя.


Рисунок 1 — Простейшая схема асинхронного двигателя

Для подачи напряжения на управляющую и силовую цепь используется автоматический выключатель QF. Пуск асинхронного двигателя осуществляется кнопкой SB1 «Пуск”, которая замыкает свои контакты в цепи катушки магнитного пускателя КМ. Который срабатывая замыкает основные контакты силовой цепи статора. Вследствие чего электродвигатель М подсоединяется к питанию. В то же время в управляющей сети происходит замыкание блокирующего контакта КМ который шунтирует кнопку SB1.

Чтобы отключить асинхронный двигатель с кз ротором, необходимо нажать клавишу SB2 «Стоп». При этом питающая сеть контактора КМ размыкается и подача напряжения на статор прекращается. После этого нужно выключают автомат QF. Схема управления АД с кз предусматривает несколько защит:

  • от КЗ — посредством автоматического выключателя QF и плавкими предохранителями FU;
  • от перегрузок — посредством теплореле КК (при перегреве данные устройства отсоединяют контактор КМ, прекращая работу движка);
  • нулевая защита — посредством магнитного пускателя КМ (при низком напряжении или его полном отсутствии контактор КМ оказывается незапитанным, размыкается и электродвигатель выключается).

Для подключения электродвигателя после срабатывания защитного механизма требуется снова надавить клавишу SB1.

Двигатель с фазным ротором

Ротор фазного типа принципиально не отличается обмoткой от статора. Это трехфазная обмотка, концы которой соединены по схеме «звезда». Свободные концы обмоток подключены к токоприемным кольцам. Кольца контактируют с проводником посредством щеток и поэтому есть возможность установить в схему подключения дополнительный ограничивающий резистор.

Резистор, как устройство плавного пуска, служит для того, чтобы была возможность уменьшать значения пускового тока, который может достигать довольно крупных значений.

Реостатный пуск асинхронного двигателя с кз ротором.

Если невозможно запустить АД с кз ротором в стандартном режиме, используют запуск при сниженном напряжении. С этой целью в цепь статора добавляют сопротивление, реостат или используют автотрансформатор. Автоматический выключатель QF срабатывает и на управляющую и силовую цепь поступает напряжение. После нажатия кнопки SB1 пускатель КМ1 приходит в действие, подавая электроток в цепь статора с включенным сопротивлением. В то же время питание поступает и на реле времени КТ.


Рисунок 2 — Схема асинхронного двигателя с симметричными сопротивлениями (реостатный пуск)

Через определенный временной интервал, задаваемый реле КТ, происходит замыкание контакта КТ. В итоге пускатель КМ2 шунтирует (закорачивает) сопротивление статора. Процедура запуска электродвигателя завершается. Для его выключения необходимо нажать клавишу SB2 и выключить автомат QF.

Короткозамкнутый ротор и его особенности

Короткoзамкнутый ротор представляет собой наборной сердечник из специальной листовой стали. Сердечник имеет каналы, которые не изолируют обмотки друг от друга, а наоборот — они залиты расплавленным легкоплавким легким металлом, а он образует прутки, которые в торцах фиксируются на кольцах.

Металл, из которого выполняют эти прутки и которым заливают пространства между сердечниками, зависит от требуемых характеристик двигателя и это может быть как медь, так и алюминий.

Реверсивный пуск асинхронного двигателя


Рисунок 3. Схема реверсивный пуск асинхронного двигателя с кз ротором.

Данная схема дает возможность производить запуск электродвигателя и изменять направленность его вращения. Для запуска необходимо включить автомат QF и нажать SB1 «Пуск», в результате чего ток поступает на магнитный пускатель КМ1, который запитывает статор. АД реверсируется последовательным нажатием кнопок «Стоп» SB3 (КМ1 выключается и двигатель останавливается) и «Реверс» SB2 (срабатывает КМ2 и асинхронный двигатель запускается в реверсивном направлении).

В данной схеме нажатием кнопки реверса меняется чередование фаз питающего напряжения на статоре двигателя, что будет вызывать смену направленности его вращения (реверсом). При помощи нормально замкнутых контактов КМ1 и КМ2 выполнена защита от ошибочного включения сразу двух магнитных пускателей КМ1 и КМ2. Также действуют защиты, аналогичные описанным ранее. Отключить электродвигатель можно кнопкой SB3 и автоматом QF.

Преимущества АС двигателя

Главной особенностью характеристик этого двигателя и самым ценные их проявлением, считают тот факт, что нагрузка на двигатель практически никак не зависит от частоты вращения вала. Магнитные поля и электродвижущую силу изучают уже лет двести, а наш асинхронный двигатель стал лучшим подтверждением тому, это один из самых эффективных методов трансформации энергии.

Принцип работы этого мотора как раз основан на взаимодействии подвижного магнитного поля и токопроводящего элемента, распложенного внутри этого поля. Двигатель, как известно еще со школьной скамьи, состоит из двух базовых узлов — рoтора и статора. Статoр как раз генерирует вращающееся магнитное поле. Конструктивно, статoр представляет собой металлический сердечник, на него намотана обмотка из медной проволоки с термолаковой изоляцией.

Внутри статора, внутри его магнитного поля, поместили ротор, который представляет собой вал с сердечником и обмоткой. На рисунке ниже изображена схема устройства асинхронного мотора. По схеме понятно, что статор состоит из наборных пластин и нескольких обмоток, которые намотаны на пластинчатый сердечник. Эти обмотки могут подсоединяться по разным схемам, в зависимости от типа напряжения. Каждая их обмоток сдвинута друг отнoсительно друга на 120 градусов. А ротор такого двигателя может быть принципиально двух типов.

Как работает магнитное поле

Работает двигатель на основе процесса получения механической работы в результате воздействия на проводник движущегося магнитного поля. На обмотку статора подают напряжение, причем каждая фаза образует свой магнитный поток. Частота магнитного потока напрямую зависит от частоты подаваемого тока на концы обмотки.

За счет того, что обмотки сдвинуты на 120 градусов, сдвигаются и магнитные поля, причем сдвигаются они как в пространстве, так и во времени. Суммарный магнитный поток и будет вращать ротор двигателя. Это происходит потому, что вращающийся поток суммы частот каждой из обмоток, образуют в роторе электродвижущую силу. Поскольку ротор — короткозамкнутый, то он имеет свою собственную электрическую цепь, которая взаимодействуя с магнитным полем статора, образует крутящий момент, направленный в сторону движения магнитного потока статора.

Следовательно, принцип работы асинхронного двигателя с короткозамкнутым ротором, объясняется вращением магнитного суммарного потока статора и его взаимодействия с возникшим в результате подачи тока, магнитным полем ротора.

Асинхронный электродвигатель с короткозамкнутым ротором схема

Все электрические двигатели содержат две главные части, взаимодействующие друг с другом. Этими частями являются статор и ротор. Статор инициирует взаимодействие, и ротор отвечает на него своим вращением. Все электродвигатели классифицируются на основе того или иного принципа, обеспечивающего взаимодействие главных частей. Например, в движке статор подобно первичной обмотке трансформатора индуцирует во вторичной обмотке — роторе — электромагнитные процессы. Значит это — асинхронный электродвигатель.

Как поменять направление вращения однофазного асинхронного двигателя: 2 схемы

Высока вероятность того, что АД запустили по одному из вышеперечисленных принципов, а он крутится не в ту сторону, что требуется для привода.

Другой вариант: на станке необходимо обязательно выполнять реверс для обработки деталей. Оба эти случаи поможет реализовать очередная разработка.

Возвращаю вас к начальной схеме, когда мы случайным образом объединяли концы главной и вспомогательной обмоток. Теперь нам надо сменить последовательность включения одной из них. Показываю на примере смены полярности пусковой обмотки.

Как поменять направление вращения двигателя

В принципе так можно поступить и с главной. Тогда ток по этой последовательно собранной цепочке изменит направление одного из магнитных потоков и направление вращения ротора.

Для одноразового реверса этого переключения вполне достаточно. Но для станка с необходимостью периодической смены направления движения привода предлагается схема реверса с управлением тумблером.

Этот переключатель можно выбрать с двумя или тремя фиксированными положениями и шестью выводами. Подбирать его конструкцию необходимо по току нагрузки и допустимому напряжению.

Схема реверса однофазного АД с пусковой обмоткой через тумблер имеет такой вид.

Схема реверса двигателя

Пускать токи через тумблер лучше от вспомогательной обмотки, ибо она работает кратковременно. Это позволит продлить ресурс ее контактов.

Реверс АД с конденсаторным запуском удобно выполнить по следующей схеме.

Реверс асинхронного двигателя

Для условий тяжелого запуска параллельно основному конденсатору через средний контакт с самовозвратом кнопки ПНВС подключают дополнительный конденсатор. Эту схему не рисую, она показана раньше.

Переключать положение тумблера реверса необходимо исключительно при остановленном роторе, а не во время его вращения. Случайная смена направления работы двигателя под напряжением связана с большими бросками токов, что ограничивает его ресурс.

Поэтому место расположения тумблера реверса на станке необходимо выбирать так, чтобы исключить случайное оперирование им во время работы. Устанавливайте его в углублениях конструкции.

Если у вас еще остались неясные моменты про однофазный асинхронный двигатель и схему подключения, то задавайте их в комментариях. Обязательно обсудим.

Прямой пуск

Этот способ пуска отличается от других своей простотой. Однако в момент подключения двигателя к сети в цепи статора возникает большой пусковой ток, в 5-7 раз превышающий номинальный ток двигателя. При малой инерционности исполнительного механизма скорость двигателя очень быстро возрастает до установленного значения, и ток спадает, достигая величины, соответствующей нагрузке двигателя. Но значительный бросок тока в цепи двигателя влияет на питающую сеть и при недостаточной мощности последней это влияние может выразиться в заметных колебаниях напряжения сети. При реализации пуска подачей полного напряжения на статор асинхронного двигателя имеют место два неблагоприятных фактора, а именно: — большая кратность начального пускового тока, которая достигает (6-10) In, — колебательный затухающий характер пускового момента двигателя. Последствия действия этих факторов: большой начальный пусковой ток вызывает значительные просадки напряжения на питающих шинах (при соизмеримой мощности трансформатора и двигателя), что нарушает работу, как других потребителей, так и самого двигателя (затягивание пуска). Большой пусковой ток вызывает также значительные термические перегрузки обмотки, следствием чего может быть ускоренное старение изоляции, ее повреждение и, как результат, межвитковое короткое замыкание. Значительные колебания момента двигателя на начальном этапе пуска, которые могут превышать 4-5 кратное значение номинального момента, создают неблагоприятные условия для работы механики.

Прямой пуск означает, что электродвигатель включается прямым подключением к источнику питания при номинальном напряжении. Прямой пуск применяется при стабильном питании двигателя, жестко связанного с приводом, например насоса. Прямой пуск от сети является самым простым, дешёвым и самым распространённым методом пуска. Если поступающий ток от сети не имеет специальных ограничений, такой метод является наиболее предпочтительным.

Звезда-треугольник

Для асинхронных двигателей, работающих при соединении обмотки статора треугольником, у которых фазное напряжение равно напряжению сети, может быть применен пуск в ход переключением обмотки статора со звезды на треугольник. В момент подключения двигателя к сети переключатель устанавливают в положение «звезда», при котором обмотка статора оказывается соединенной звездой. В этом случае фазное напряжение на статоре понижается в √3 раз. Во столько же уменьшается и ток в фазных обмотках двигателя. Кроме того, при соединении обмоток звездой линейный ток равен фазному, в то время как при соединении треугольником он больше фазного в √3 раз. Следовательно, применение способа пуска в ход переключением статорной обмотки со звезды на треугольник дает уменьшение пускового (линейного) тока в три раза по сравнению с пусковым током при непосредственном подключении двигателя к сети. После того, как ротор двигателя разгонится до скорости, близкой к номинальной, переключатель быстро переводят в положение «треугольник». Возникший при этом бросок тока обычно невелик и не влияет на работу сети. Однако описанный способ пуска имеет серьезный недостаток. Дело в том, что уменьшение фазного напряжения в √3 раз при пуске влечет за собой уменьшение пускового момента в (√3)2 = 3 раза, так как пусковой момент двигателя прямо пропорционален квадрату напряжения. Такое значительное уменьшение пускового момента ограничивает применение этого способа пуска для двигателей, включаемых под нагрузкой на валу. Для механизмов с небольшим моментом инерции, например погружных насосов, пуск по методу «звезда-треугольник» не очень эффективен либо даже неэкономичен. Дело в том, что диаметр погружных насосов и их приводных электродвигателей невелик. Поэтому масса рабочего колеса насоса мала, вследствие чего мал и момент инерции. В результате погружным насосам для разгона от 0 до номинальной скорости об/мин. требуется не более пары десятков периодов напряжения сети. Это означает также, что насос при отключении конфигурации «звезда» и перед переходом к «треугольнику» (переключении тока) очень быстро, практически сразу же, останавливается. Следует отметить, что слишком долгая эксплуатация электродвигателя в режиме звезды приводит к его перегреву и, следовательно, сокращает срок службы. Поэтому рекомендуется заменять схемы пуска «звезда-треугольник» на устройства плавного пуска.

Пуск с помощью частотного преобразователя

Частотный преобразователь, представляет собой электронное статическое устройство, предназначенное для управления асинхронного или синхронного электродвигателя переменного тока. На выходе преобразователя формируется электрическое напряжение с переменной амплитудой и частотой. Название «частотный преобразователь» обусловлено тем, что регулирование скорости вращения двигателя осуществляется изменением частоты напряжения питания, подаваемого на двигатель от преобразователя. Инвертер преобразует напряжение питающей сети 220В/380В частотой 50Гц в выходное импульсное напряжение, которое формирует в обмотках двигателя синусоидальный ток частотой от 0 до 400 Гц и выше. Частотный преобразователь дает возможность регулировки частоты оборотов двигателя переменного тока, изменяя характеристики электросети. В зависимости от настроек частотного преобразователя, когда подается низкое напряжение, насос может работать на низких оборотах. При небольшой потребности в водозаборе работа насоса на пониженной мощности экономит электроэнергию и увеличивает ресурс двигателя. Но, самое главное, в момент пуска насоса двигатель начинает работать с самой маленькой частотой, постепенно разгоняясь до заданных оборотов, что исключает гидравлический удар. Частотно-регулируемый электропривод, в общих чертах состоит из трехфазного электродвигателя переменного тока и инвертера, который обеспечивает, как минимум, плавный пуск электродвигателя, его остановку, изменение скорости и направления вращения. Возможность подобного регулирования улучшает динамику работы электродвигателя и, тем самым, повышает надежность и долговечность работы технологического оборудования. Более того, инвертер позволяет внедрить автоматизацию практически любого технологического процесса. При этом создается система с обратной связью, где инвертер автоматически изменяет скорость вращения электродвигателя таким образом, чтобы поддерживать на заданном уровне различные параметры системы, например, давление, расход, температура, уровень жидкости и т.п. За счет оптимального управления электродвигателем в зависимости от нагрузки, потребление электроэнергии в насосных, вентиляторных, компрессорных и др. агрегатах снижается на 40-50%, а пусковые токи, составляющие 600-700% от номинального тока и являющиеся бичом для пуско-регулирующей аппаратуры, исчезают совсем. Таким образом, применение регулируемых электроприводов на основе частотных преобразователей позволяет создать новую технологию энергосбережения, в которой не только экономится электрическая энергия, но и увеличивается срок службы электродвигателей и технологического оборудования в целом.

Устройство безопасного запуска электродвигателя

Широкое использование асинхронных трехфазных двигателей в различных механизмах и оборудовании часто сталкивается с проблемой резкого пуска силовой установки, что во многих случаях влияет на долговечность эксплуатации или приводит к выходу из строя приводимых в действие элементов.

Кроме того, при резком запуске, пусковой ток электродвигателя в несколько раз превышает его рабочие показатели и тем самым влияет на срок эксплуатации не только электрического оборудования, но и сетей, к которым он подключен. Для устранения этого недостатка и негативных его последствий для оптимальной работы применяют устройство плавного пуска (УПП) электродвигателя.

Функции прибора

Аппаратура, которая осуществляет процесс плавного пуска также реализует и функцию торможения, что тоже немаловажно для лояльной работы многих агрегатов на основе электрических приводов.

Софтстартеры, так называют устройства плавного пуска, реализованы на базе симисторов, которые в отличие от других схем запуска электродвигателя обеспечивает поступательный бесступенчатый разгон двигателя, ограничивая пусковой ток.

  Этот принцип не только оптимизирует пусковой момент, но выполняет функции управления и защиты, а кроме того дает вполне определяемый экономический эффект.

Следует определить, что УПП в большинстве случаев реализует функции:

  • по ограничению пускового тока до 3 – 4,5 номинального значения,
  • понижению напряжения питания  при наличии соответствующего по мощности трансформатора и подводящих шин,
  • оптимизации пускового и тормозного момента,
  • аварийной защиты сети от токовых перегрузок,
  • предотвращение заклинивания вала электродвигателя.

При этом необходимо понимать, что УПП не может производить регулировку частоты вращения, реверсировать направление вращения, увеличивать пусковой момент и снижать пусковой ток до значения ниже, чем требуется для старта вращения ротора.

Плавный пуск электродвигателя может быть реализован несколькими вариантами включения симисторов в цепи управления и разделяется на однофазные, двухфазные и трехфазные схемы включения, каждая из которых имеет функциональные отличия и стоимость исполнения соответственно. Кроме того, при использовании для питания двигателя соединения типа «треугольник» существует возможность включить симистор в разрыв обмотки.

Симистор, как известно, представляет собой включенных два встречно параллельных тиристора с управляющим входным каналом. В схеме УПП тиристоры исполняют роль быстродействующих контакторов, которые включаются напряжением, а выключаются током.

Однофазная схема регулирования (рис.

1) предполагает запуск электродвигателя мощностью не более 11 кВт в том случае, если требуется смягчить пусковой удар, а уже торможение, длительный запуск и ограничения на пусковой ток не имеют значения, так как при этом варианте реализовать такие функции нет возможности. Подобные УПП в последнее время сняты с производства как следствие значительного удешевления полупроводниковых приборов, в том числе и тиристоров.

Двухфазные УПП (рис. 2) применяются для регулирования пуска двигателей мощностью до 250 кВт. Такие устройства, хотя иногда и снабжают байпасными контакторами (by pass) с целью удешевления, но этим решением не устраняют недостаток, заключенный в несимметричности питания каждой фазы,  что в итоге может привести к перегреву.

Самой совершенной схемой, осуществляющей не только мягкий пуск электродвигателя, но и обеспечивающей универсальное применение УПП, является трехфазное регулирование.

Мощность управляемых УПП двигателей ограничивается тепловой и электрической прочностью симисторов, а функциональность таких устройств позволяет реализовать множество решений.

Важно

в том числе динамическое торможение, подхват обратного хода и симметричность ограничений силы магнитного поля и тока.

Важной составляющей устройства плавного пуска является байпасный контактор, о котором упоминалось ранее, позволяющий создать наиболее комфортные условия, как для работы электродвигателей, так и для самого УПП.

Байпасный, или иначе ,обходной контактор (БК), предназначен для облегчения теплового режима системы плавного запуска для питания двигателя при выходе на установленные обороты.

Схематично включение БК выглядит, как указано на рисунке.

Варианты схем включения УПП в систему питания и управления электродвигателем

Стандартная схема включения устройства для плавного запуска электродвигателя предусматривает использование магнитного пускателя, теплового реле, быстродействующих предохранителей или автоматических выключателей, причем, последние должны иметь регулировку по токам перегрузки. Ниже на рисунках изображено принципиальное включение элементов УПП относительно обмоток электродвигателя по трех проводной и шести проводной схеме.

Схема включения, исключающая потерю мощности

В предложенной схеме используется шунтирующий пускатель, который обеспечивает работу двигателя после его выхода на установленное число оборотов и отключает устройство плавного пуска.

Важной характеристикой шунтирующего (байпасного) пускателя является то, что он в отличие от сетевого адаптера не должен проводить через себя пусковой ток и рассчитываются его параметры только по номинальной (установившейся)  нагрузке.

Подобная схема включения УПП является единственно правильной при управлении параллельно несколькими двигателями, которые должны работать в синхронном режиме. Кроме того байпасная схема рекомендуется к применению для двигателей большой мощности.

Современные устройства плавного пуска выпускаются с возможностью сопряжения с программируемыми контролерами и компьютерными системами через совместимый интерфейс и могут включаться по требованию оператора или общей системы управления.

Кроме всех преимуществ, отмеченных выше, стоит отметить, что изменение характеристик пусковых токов несет экономическую выгоду, которая определяется сохранностью оборудования и питающих сетей и может быть просчитана в долгосрочном режиме.