Закон Ома для однородного участка цепи – формула

Классическая формулировка

Этот простой вариант трактовки, известный нам со школы.

Однородный открытый участок электроцепи
Однородный открытый участок электроцепи

Формула в интегральной форме будет иметь следующий вид:

Формула в интегральной форме
Формула в интегральной форме

То есть, поднимая напряжение, мы тем самым увеличиваем  ток. В то время, как увеличение такого параметра, как «R», ведет к снижению «I».  Естественно, что на рисунке сопротивление цепи показано одним элементом, хотя это может быть последовательное, параллельное (вплоть до произвольного)соединение нескольких проводников.

В дифференциальной форме закон мы приводить не будем, поскольку в таком виде он применяется, как правило, только в физике.

Свойства электрического тока

Направлением электрического тока принято считать движение свободных положительных зарядов. Ток называется постоянным, если его направление и сила постоянны во времени.

Электрическое поле величиной E действует на заряд величиной q с силой F, которая равна:

$ F = q * E $ (1).

В результате в проводнике возникает электрический ток. Для создания электрического поля E, к концам проводника должно быть приложено напряжение U, которое равно разности потенциалов φ1 и φ2 на концах проводника:

$ U = φ2 – φ1 $ (2),

при этом φ2 > φ1.

Единица электрического тока — ампер (А) — названа в честь французского физика Ампера. Эта единица является одной семи основных единиц в Международной системе СИ. Единицей измерения напряжений является вольт (В), названная в честь итальянского исследователя Алессандро Вольта.

Опыты Георга Ома

В 1826 г. Георг Ом на основании данных своих многочисленных экспериментов открыл однозначную связь между силой тока I и напряжением U. Ученый измерял зависимости тока от напряжения (вольт-амперные характеристики) и строил графики, из которых он обнаружил не просто пропорциональность (чем больше напряжение, тем больше ток), а линейную математическую зависимость тока от напряжения, т.е. I ∼ U.

График линейной зависимости силы тока от напряжения в проводниках:

Рис. 1. График линейной зависимости силы тока от напряжения в проводниках:.

Из графиков было видно, что угол наклона линейных зависимостей для разных материалов разный, т.е. каждый проводник обладал различной степенью сопротивляемости или проводимости. Эта величина была названа электрическим сопротивлением R. Формула закона Ома для однородного участка цепи выглядит следующим образом:

$ I = {U over R} $ (3).

Полностью формулировка закона Ома звучит так: сила тока I для проводника на однородном участке цепи прямо пропорциональна напряжению U на этом участке и обратно пропорциональна сопротивлению проводника R.

Любую электрическую цепь можно разделить на отдельные участки. Участки цепи, на которых отсутствует действие сторонних сил (т.е. участки, где отсутствуют источники тока), называются однородными. Участки цепи, на которых имеются источники тока, называются неоднородными.

Принятые единицы измерения

Необходимо учитывать, что все расчеты должны проводиться в следующих единицах измерения:

  • напряжение – в вольтах;
  • ток в амперах
  • сопротивление в омах.

Если вам встречаются другие величины, то их необходимо будет перевести к общепринятым.

Сила тока I

Пусть в каком-то проводнике течет ток. То есть, происходит направленное движение заряженных частиц – допустим, это электроны. Каждый электрон обладает элементарным электрическим зарядом (e= -1,60217662 × 10-19 Кулона). В таком случае через некоторую поверхность за определенный промежуток времени пройдет конкретный электрический заряд, равный сумме всех зарядов протекших электронов.

Сила тока что такое

Отношение заряда к времени и называется силой тока. Чем больший заряд проходит через проводник за определенное время, тем больше сила тока. Сила тока измеряется в Амперах.

Напряжение U, или разность потенциалов

Это как раз та штука, которая заставляет электроны двигаться. Электрический потенциал характеризует способность поля совершать работу по переносу заряда из одной точки в другую. Так, между двумя точками проводника существует разность потенциалов, и электрическое поле совершает работу по переносу заряда.

Напряжение, что такое

Физическая величина, равная работе эффективного электрического поля при переносе электрического заряда, и называется напряжением. Измеряется в Вольтах. Один Вольт – это напряжение, которое при перемещении заряда в 1 Кл совершает работу, равную 1 Джоуль.

Сопротивление R

Ток, как известно, течет в проводнике. Пусть это будет какой-нибудь провод. Двигаясь по проводу под действием поля, электроны сталкиваются с атомами провода, проводник греется, атомы в кристаллической решетке начинают колебаться, создавая электронам еще больше проблем для передвижения. Именно это явление и называется сопротивлением. Оно зависит от температуры, материала, сечения проводника и измеряется в Омах.

Памятник Георгу Симону Ому
Памятник Георгу Симону Ому

Мощность электрического тока

Мощность электрического тока равна отношению работы тока ко времени, в течение которого она совершается.

Обозначение – ​( P )​, единица измерения в СИ – ватт (Вт).

Вычисляется по формуле:

Можно записать еще несколько формул для вычисления мощности электрического тока на участке цепи:

Полная мощность источника тока:

Коэффициент полезного действия источника тока:

При решении задач на тепловое действие тока нужно учитывать следующее:

1. Если на участке есть источник тока, то необходимо использовать для решения формулу закона Джоуля–Ленца:

2. Если сила тока в цепи постоянна, то удобно использовать формулу закона Джоуля–Ленца:

3. Если постоянно напряжение, то формулу:

4. Количество теплоты можно находить, используя формулы термодинамики.

Электрическое сопротивление. Удельное сопротивление вещества

Электрическое сопротивление – свойство материала проводника препятствовать прохождению через него электрического тока.

Обозначение – ​( R )​, единица измерения в СИ – Ом.

Объяснить наличие сопротивления можно на основе строения металлических проводников. Свободные электроны при движении по проводнику встречают на своем пути ионы кристаллической решетки и другие электроны и, взаимодействуя с ними, неизбежно теряют часть своей энергии. Различные металлические проводники, имеющие различное атомное строение, оказывают различное сопротивление электрическому току.

Чем больше сопротивление проводника, тем хуже он проводит электрический ток.

Сопротивление различных проводников зависит от материала, из которого они изготовлены, их длины, геометрической формы и температуры. Для характеристики электрического сопротивления различных материалов введено понятие так называемого удельного сопротивления.

Удельным сопротивлением называется сопротивление проводника длиной 1 м и площадью поперечного сечения 1 м2.

Обозначение – ​( rho )​, единица измерения в СИ – Ом·м.

Каждый материал, из которого изготовляется проводник, обладает своим удельным сопротивлением.

Например, удельное сопротивление меди равно 1,7·10-8 Ом·м, т. е. медный проводник длиной 1 м и сечением 1 м2 обладает сопротивлением 1,7·10-8 Ом. На практике часто используют единицу удельного сопротивления (Ом·мм2)/м.

Электрическое сопротивление проводника прямо пропорционально длине проводника и обратно пропорционально площади поперечного сечения проводника.

Формула для вычисления:

Сопротивление проводника увеличивается с ростом температуры. Удельное сопротивление зависит от температуры:

где ​( rho_0 )​ – удельное сопротивление при ​( T_0 )​ = 293 К (20°С), ​( Delta T=T-T_0 )​, ​( alpha )​ – температурный коэффициент сопротивления.

Единица измерения температурного коэффициента сопротивления – К-1.

При нагревании увеличивается интенсивность движения частиц вещества. Это создает трудности для направленного движения электронов. Увеличивается число столкновений свободных электронов с ионами кристаллической решетки.

Свойство изменения сопротивления при изменении температуры используется в термометрах сопротивления. Эти приборы могут измерять температуру, основываясь на зависимости сопротивления от температуры. У термометров сопротивления высокая точность измерений.

Электродвижущая сила. Внутреннее сопротивление источника тока

Для создания электрического поля в проводниках используют источник тока. Внутри источника тока происходит перераспределение зарядов, в результате которого на полюсах источника возникает избыток зарядов разных знаков.

Виды источников тока:

  • электрофорная машина;
  • термопара;
  • фотоэлемент;
  • аккумулятор;
  • гальванический элемент.

Сторонними называются силы неэлектрической природы, действующие внутри источника тока.

Когда проводник соединяют с полюсами источника, то на внешнем участке цепи заряженные частицы движутся под действием электростатической силы. А внутри источника на заряды действуют сторонние и электростатические силы.

Под действием этих сил внутри источника происходит перемещение положительных зарядов от отрицательного полюса источника к положительному. Это перемещение происходит до тех пор, пока сторонние силы не станут равными электростатическим. При переносе заряда эти силы совершают работу. Работа сторонних сил по перемещению заряда компенсирует потери энергии заряженными частицами при их движении по цепи.

Электродвижущей силой (ЭДС) называется отношение работы сторонних сил по перемещению положительного заряда к величине этого заряда.

Обозначение – ​( varepsilon )​, единица измерения в СИ – вольт (В).

Формула для вычисления:

где ​( Delta q )​ – модуль перенесенного заряда.

Если электрическая цепь содержит несколько источников тока с ЭДС ​( varepsilon_1,varepsilon_2,,…,varepsilon_T )​, то суммарная ЭДС ( varepsilon=varepsilon_1+varepsilon_2+…,varepsilon_T ).

ЭДС считается положительной, если направление обхода цепи против часовой стрелки совпадает с переходом внутри источника тока от отрицательного полюса источника к положительному полюсу.

На рисунке: ​( varepsilon_1>0,,varepsilon_2<0,,varepsilon_3>0. )​

Суммарная ЭДС: ( varepsilon=varepsilon_1-varepsilon_2+varepsilon_3. )

При подключении проводника к полюсам источника тока происходит перераспределение заряда на поверхности проводника, а внутри проводника возникает постоянное электрическое поле. Заряды начинают перемещаться по замкнутой цепи, в которой устанавливается постоянная сила тока.

Сопротивление источника тока называется внутренним сопротивлением.

Обозначение внутреннего сопротивления – ​( r )​. Единица измерения в СИ – Ом.

Закон Ома для участка цепи

Взаимосвязь между силой тока, протекающей по проводнику, и напряжением на его концах была экспериментально установлена Г. Омом и носит название закона Ома для участка цепи.

Закон Ома для участка цепи

Сила тока прямо пропорциональна напряжению на концах участка и обратно пропорциональна его сопротивлению:

График зависимости силы тока от напряжения называется вольт-амперной характеристикой. Из закона Ома для участка цепи следует, что при постоянном сопротивлении сила тока прямо пропорциональна напряжению. Следовательно, вольт-амперная характеристика для металлического проводника представляет собой прямую линию, проходящую через начало координат.

Проводник с такими свойствами называется резистором.

Угол наклона графика к оси напряжений зависит от сопротивления проводника. Тангенс угла наклона графика равен проводимости резистора.

Формулировка для полной цепи

Трактовка для полной цепи будет несколько иной, чем для участка, поскольку в законе, составленном Омом, еще учитывает параметр «r», это сопротивление источника ЭДС. На рисунке ниже проиллюстрирована подобная схема.

Схема с подключенным с источником
Схема с подключенным с источником

Учитывая «r» ЭДС, формула предстанет в следующем виде:

Учитывая «r» ЭДС

Заметим, если «R» сделать равным 0, то появляется возможность рассчитать «I», возникающий во время короткого замыкания.

Напряжение будет  меньше ЭДС, определить его можно по формуле:

Напряжение будет меньше ЭДС

Собственно, падение напряжения характеризуется параметром «I*r». Это свойство характерно многим гальваническим источникам питания.

Неоднородный участок цепи постоянного тока

Под таким типом подразумевается участок, где помимо электрического заряда производится воздействие других сил. Изображение такого участка показано на рисунке ниже.

Схема неоднородного участка
Схема неоднородного участка

Формула для такого участка (обобщенный закон) будет иметь следующий вид:

Формула для неоднородного участка цепи
Формула для неоднородного участка цепи

Переменный ток

Если в схема, подключенная к переменному току снабжена емкостью и/или индуктивностью (катушкой), расчет производится с учетом величин их реактивных сопротивлений. Упрощенный вид закона будет выглядеть следующим образом:

Упрощенный вид закона

Где «Z» представляет  собой импеданс, это комплексная величина, состоящая из активного (R) и пассивного (Х) сопротивлений.

Параллельное и последовательное соединение проводников

Проводники в электрических цепях могут соединяться последовательно и параллельно.

Последовательное соединение проводников

При последовательном соединении начало одного проводника соединяется с концом другого.

При последовательном соединении сила тока во всех проводниках одинакова:

Общее напряжение ​( U )​ на проводниках равно сумме напряжений на отдельных проводниках:

Напряжение на проводниках прямо пропорционально их сопротивлениям:

Общее сопротивление равно сумме сопротивлений проводников, образующих цепь:

Если проводники имеют одинаковое сопротивление, то общее сопротивление находится по формуле:

где ​( n )​ – число проводников, ​( R_i )​ – сопротивление проводника.

Параллельное соединение проводников

При параллельном соединении проводники подключаются между одной и той же парой точек. Если в этой точке соединяются три и более проводников, то она называется узлом электрической цепи.

При параллельном соединении напряжение на всех проводниках одинаково:

Сумма сил токов, протекающих по проводникам, равна силе тока в неразветвленной цепи:

Это следствие того факта, что в точках разветвления цепи заряды не могут накапливаться.

Силы токов в разветвленных частях цепи обратно пропорциональны их сопротивлениям:

Величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников:

Если проводники имеют одинаковое сопротивление, то общее сопротивление находится по формуле:

где ​( n )​ – число проводников, ​( R_1 )​ – сопротивление проводника.

Если параллельно соединены два проводника, от общее сопротивление вычисляется по формуле:

Смешанное соединение проводников

Смешанное соединение проводников – соединение, при котором часть проводников соединена последовательно, а часть – параллельно.

Важно!
Чтобы рассчитать общее сопротивление такого участка или найти силу тока и напряжение при таком соединении, нужно:

  1. разбить его на простые участки с последовательно или параллельно соединенными проводниками;
  2. найти общее (эквивалентное) сопротивление каждого из этих участков;
  3. составить эквивалентную схему. Обычно получается цепь из последовательно соединенных эквивалентных сопротивлений;
  4. рассчитать сопротивление полученной схемы.

Если в схеме не удается выделить участки с последовательным или параллельным соединением проводников, то можно использовать такое правило: точки с одинаковыми потенциалами можно соединять и разъединять, ток между такими точками не идет.

На рисунке, если ​( R_1=R_2,R_4=R_5, )​ то потенциалы точек 1 и 2 равны. Резистор ​( R_3 )​ можно убрать на эквивалентной схеме – ток по нему не идет.

Точки с одинаковыми потенциалами есть в схемах с осью или плоскостью симметрии относительно точек подключения источника тока.

Если схема симметрична относительно оси, проходящей через точки входа и выхода тока, то точки равного потенциала находятся на концах симметричных сопротивлений (по ним идут одинаковые токи).

Если схема симметрична относительно оси, перпендикулярной линии, на которой лежат точки входа и выхода тока, то точки равного потенциала находятся на пересечении этой оси с проводниками.

Если в схеме нет участков с известным видом соединения и нет точек с равным потенциалом, то для расчета таких цепей используют правила Кирхгофа.

Правила Кирхгофа:

  • Алгебраическая сумма сил токов, сходящихся в узле, равна нулю:

Положительными считают токи, входящие в узел, отрицательными – выходящие из узла.

  • В любом замкнутом контуре, произвольно выбранном в разветвленной цепи, алгебраическая сумма произведений сил токов на сопротивления соответствующих участков этого контура равна алгебраической сумме ЭДС, имеющихся в контуре:

Порядок расчета цепи:

  • выбрать направление токов во всей цепи;
  • записать уравнения токов для узлов;
  • записать уравнения для выделенных контуров. Произвольные замкнутые контуры выделяются так, чтобы каждый новый контур содержал хотя бы один участок, не входящий в ранее рассмотренные контуры;
  • решить полученную систему уравнений.

Алгоритм решения задач на определение силы тока, напряжения или сопротивления на участке цепи:

  • начертить схему цепи и указать на ней все элементы;
  • установить, какие элементы цепи включены последовательно, какие – параллельно;
  • расставить токи и напряжения на каждом участке цепи и записать для каждой точки разветвления (если они есть) уравнения токов и уравнения, связывающие напряжения на участках цепи;
  • используя закон Ома, установить связь между токами, напряжениями и ЭДС;
  • если в схеме делают какие-либо переключения сопротивлений или источников, уравнения составить для каждого режима работы цепи;
  • решить полученную систему уравнений относительно неизвестной величины;
  • решение проверить.

Работа электрического тока. Закон Джоуля–Ленца

Работа тока – работа сил электрического поля, создающего электрический ток.

Работа тока на участке цепи вычисляется по формуле:

Используя формулу закона Ома для участка цепи, можно работу тока вычислить так:

Работа тока в замкнутой цепи находится по формуле:

При протекании постоянного тока по металлическому проводнику электроны сталкиваются с положительными ионами, расположенными в узлах кристаллической решетки. При этом электроны передают им энергию. Это приводит к нагреванию проводника. Количество теплоты, выделяющееся в проводнике за время ​( t )​, равно:

Эта формула выражает закон Джоуля–Ленца: количество теплоты, выделяющееся при прохождении тока по проводнику, прямо пропорционально квадрату силы тока, времени его прохождения и сопротивлению проводника.

Как понять закон Ома?

Чтобы интуитивно понять закон Ома, обратимся к аналогии представления тока в виде жидкости. Именно так думал Георг Ом, когда проводил опыты, благодаря которым был открыт закон, названный его именем.

Представим, что ток – это не движение частиц-носителей заряда в проводнике, а движение потока воды в трубе.  Сначала воду насосом поднимают на водокачку, а оттуда, под действием потенциальной энергии, она стремиться вниз и течет по трубе. Причем, чем выше насос закачает воду, тем быстрее она потечет в трубе.

Отсюда следует вывод, что скорость потока воды (сила тока в проводе) будет тем больше, чем больше потенциальная энергия воды (разность потенциалов)

Сила тока прямо пропорциональна напряжению.

Теперь обратимся к сопротивлению. Гидравлическое сопротивление – это сопротивление трубы, обусловленное ее диаметром и шероховатостью стенок. Логично предположить, что чем больше диаметр, тем меньше сопротивление трубы, и тем большее количество воды (больший ток) протечет через ее сечение.

Сила тока обратно пропорциональна сопротивлению.

Такую аналогию можно проводить лишь для принципиального понимания закона Ома, так как его первозданный вид – на самом деле довольно грубое приближение, которое, тем не менее, находит отличное применение на практике.

В действительности, сопротивление вещества обусловлено колебанием атомов кристаллической решетки, а ток – движением свободных носителей заряда. В металлах свободными носителями являются электроны, сорвавшиеся с атомных орбит.

Ток в проводнике
Ток в проводнике

В данной статье мы постарались дать простое объяснение закона Ома. Знание этих на первый взгляд простых вещей может сослужить Вам неплохую службу на экзамене. Конечно, мы привели его простейшую формулировку закона Ома и не будем сейчас лезть в дебри высшей физики, разбираясь с активным и реактивным сопротивлениями и прочими тонкостями.

Основные формулы раздела «Законы постоянного тока»

Магнитное поле → ← Электрическое поле Законы постоянного тока3.9 (77.5%) 8 votes

Практическое использование

Пример приведен на рисунке.Применяем закон к любому участку цепи
Применяем закон к любому участку цепи

Используя такой план, можно вычислить все необходимые характеристики для неразветвленного участка. Рассмотрим более детальные примеры.
Находим силу тока
Рассмотрим теперь более определенный пример, допустим, возникла необходимость узнать ток, протекающий через лампу накаливания. Условия:

  • Напряжение – 220 В;
  • R нити накала – 500 Ом.

Решение задачи будет выглядеть следующим образом: 220В/500Ом=0,44 А.

Рассмотрим еще одну задачу со следующими условиями:

  • R=0,2 МОм;
  • U=400 В.

В этом случае, в первую очередь, потребуется выполнить преобразование: 0,2 МОм = 200000 Ом,после чего можно приступать к решению: 400 В/200000 Ом=0,002 А (2 мА).
Вычисление напряжения
Для решения мы также воспользуемся законом, составленным Омом. Итак задача:

  • R=20 кОм;
  • I=10 мА.

Преобразуем исходные данные:

  • 20 кОм = 20000 Ом;
  • 10 мА=0,01 А.

Решение: 20000 Ом х 0,01 А = 200 В.

Незабываем преобразовывать значения, поскольку довольно часто ток может быть указан в миллиамперах.

Сопротивление.

Несмотря на то, что общий вид способа для расчета параметра «R» напоминает нахождение значения «I», между этими вариантами существуют принципиальные различия. Если ток может меняться в зависимости от двух других параметров, то R (на практике) имеет постоянное значение. То есть по своей сути оно представляется в виде неизменной константы.

Если через два разных участка проходит одинаковый ток (I), в то время как приложенное напряжение (U) различается, то, опираясь на рассматриваемый нами закон, можно с уверенностью сказать, что там где низкое напряжение «R» будет наименьшим.

Рассмотрим случай когда разные токи и одинаковое напряжение на несвязанных между собой участках. Согласно закону, составленному Омом, большая сила тока будет характерна небольшому параметру «R».

Рассмотрим несколько примеров.

Допустим, имеется цепь, к которой подведено напряжение U=50 В, а потребляемый ток I=100 мА. Чтобы найти недостающий параметр, следует 50 В / 0,1 А (100 мА), в итоге решением будет – 500 Ом.

Вольтамперная характеристика позволяет наглядно продемонстрировать пропорциональную (линейную) зависимость закона. На рисунке ниже составлен график для участка с сопротивлением равным одному Ому (почти как математическое представление закона Ома).

Изображение вольт-амперной характеристики, где R=1 Ом

Изображение вольтамперной характеристики
Изображение вольт-амперной характеристики

Вертикальная ось графика отображает ток I (A), горизонтальная – напряжение U(В). Сам график представлен в виде прямой линии, которая наглядно отображает зависимость от сопротивления, которое остается неизменным. Например, при 12 В и 12 А «R» будет равно одному Ому (12 В/12 А).

Обратите внимание, что на приведенной вольтамперной характеристике отображены только положительные значения. Это указывает, что цепь рассчитана на протекание тока в одном направлении. Там где допускается обратное направление, график будет продолжен на отрицательные значения.

Заметим, что оборудование, вольт-амперная характеристика которого отображена в виде прямой линии, именуется — линейным. Этот же термин используется для обозначения и других параметров.

Помимо линейного оборудования, есть различные приборы, параметр «R» которых может меняться в зависимости от силы тока или приложенного напряжения. В этом случая для расчета зависимости нельзя использовать закон Ома. Оборудование такого типа называется нелинейным, соответственно, его вольт-амперные характеристики не будут отображены в виде прямых линий.

Что мы узнали?

Итак, мы узнали, что закон Ома для однородного участка цепи формулируется так: сила тока I для проводника на однородном участке цепи прямо пропорциональна напряжению U на этом участке и обратно пропорциональна сопротивлению проводника R. Участки электрической цепи, на которых отсутствуют источники тока, называются однородными. Удельное электрическое сопротивление вещества ρ — величина, характеризующая способность вещества к сопротивлению.

Вывод

Как уже упоминалось в начале статьи, вся прикладная электротехника базируется на законе, составленном Омом. Незнание этого базового догмата может привести к неправильному расчету, который, в свою очередь, станет причиной аварии.

Подготовка электриков как специалистов начинается с изучения теоретических основ электротехники. И первое, что они должны запомнить – это закон составленный Омом, поскольку на его основе производятся практически все расчеты параметров электрических цепей различного назначения.

Понимание основного закона электротехники поможет лучше разбираться в работе электрооборудования и его основных компонентов. Это положительно отразится на техническом обслуживании в процессе эксплуатации.

Самостоятельная проверка, разработка, а также опытное изучение узлов оборудования – все это существенно упрощается, если использовать закон Ома для участка цепи. При этом не требуется проводить всех измерений, достаточно снять некоторые параметры и, проведя несложные расчеты, получить необходимые значения.

Источники

  • https://www.asutpp.ru/zakon-oma-dlya-uchastka-cepi.html
  • https://obrazovaka.ru/fizika/zakon-oma-dlya-odnorodnogo-uchastka-cepi-formula.html
  • https://Zaochnik.ru/blog/zakon-oma-dlya-chajnikov/
  • https://fizi4ka.ru/egje-2018-po-fizike/zakony-postojannogo-toka.html

[свернуть]