Принцип работы водяного насоса

Все это кажется по истине удивительным и невероятным, но тут нет никакого секрета. Такие водяные насосы ещё называют гидроударными и работают они так:
Когда подается вода, то она сразу устремляется в открытый клапан.

Как только вода наберет небольшой разбег этот клапан резко закроется. А так как столб воды в трубе имеет инерцию как и любая физическая масса, то произойдет гидроудар, который создаст избыточное давление, способное открыть второй клапан. И вода устремится в ресивер, где будет сжимать воздух.

Как только избыточное давление будет погашено и станет меньше исходящего — средник клапан закроется и откроется верхний. В результате чего вода опять побежит через верхний клапан.

Далее цикл повторяется.
Более подробную анимацию смотрите в видео:

Изготовление водяного насоса

Итак, для начала я расскажу как устроен насос, а потом его принцип действия и работа в реальных условиях.

Конструкция с описанием

Вот так он выглядит. Все делано из труб ПВХ.

В данном случае конструкция имеет вид прямой трубы с различными клапанами и краниками, с ответвлением в центре более толстого диаметра трубы.
Самая толстая чать — это буфер или ресивер для накопления и стабилизации давления. Слева и справа установлены входные и выходные шаровые краны.
Я буду рассматривать насос справа на лево. Так как правая сторона — это вход для воды, а левая — выход.
Вообщем, уяснили, что вода подается на шаровый кран справа. Далее идет на тройник. Тройник, разделяет потоки. Вверх подает к клапану, который закрывается при достаточном давлении. А прямой поток подается на клапан, который открывается при достижении нужного давления.
Затем, идет опять тройник на ресивер и уже на выход. А, ещё манометр, но его может и не быть, не столь важен.

Детали

Все детали разложены перед сборкой. Я использую ПВХ трубы, они клеются на клей, но вполне можно использовать и полипропилен.

Клапан.

Сборка

Собираю. Второй клапан по середине и выглядит немного иначе. Разница этих двух клапанов в том, что изначально латунный клапан будет всегда открыт, а клапан из ПВХ изначально всегда закрыт.

Собираем буфер-ресивер.

Конечная часть насоса.

Почти готовый образец.

Добавим манометр для замера давления в работе.

Водяной насос с манометром готов к испытаниям.

Как сделать насос, который работает без электричества

Насос качает воду сам по себе. Не используя постороннюю энергию.

Что потребуется для изготовления гидротарана своими руками

Больших затрат на изготовление подобного изделия не потребуется. Основными деталями здесь будут два обратных клапана. Их диаметр зависит от необходимого напора воды. В сегодняшнем примере будут использоваться клапаны и трубы на полдюйма, однако если требуется, допустим, полив огорода, придётся подбирать более толстые элементы.

Помимо клапанов необходимо подготовить пластиковые трубы, пару тройников, колено, шаровой кран и пластиковую бутылку, которая будет использоваться в качестве расширительного бачка.

Подготовка материала для изготовления гидротаранного насоса

Для соединения металлических и пластиковых элементов можно использовать специальные переходники, однако в данном случае намного проще попросту нарезать резьбу на трубах. Сделать это довольно просто при наличии плашки необходимого размера. Слишком большого давления гидротаран создать не сможет, а значит, и такое соединение будет держать неплохо. Если же мастер не слишком доверяет подобному соединению, можно приобрести специальные элементы.

Изготавливаем насос, который качает воду сам по себе

Для того чтобы сделать водяной насос своими руками, вам понадобятся такие материалы:

  • Два обратных клапана.
  • Пластиковая труба для пайки.
  • Тройник.
  • Колено.
  • Резьбовые концы.
  • Различные емкости.
  • Паяльник или горелка.
  • Токарный станок или резьбовые наконечники.

Шаг 1

Первым делом вам необходимо приобрести два обратных клапана с любой резьбой.

Шаг 2

Чтобы не покупать резьби, необходимо взять пластиковую трубу для пайки, которая будет обрабатываться на токарном станке.

Шаг 3

Приступаем к нарезанию резьбы на токарном станке.

Готовая труба с резьбой должна идеально подходить к обратному клапану.

Вторую трубу прикручиваем к еще одному обратному клапану.

Можно также использовать резьбовые наконечники, чтобы не прорабатывать трубы на станке. Но они достаточно дорогие.

Шаг 4

Так выглядит готовая конструкция. Потоки воды идут вверх. Потом они они уходят на подачу в шланг, где будет установлен краник. В центре будет установлен расширительный бачок.

Шаг 5

Так выглядит готовая конструкция, которая качает воду в бак.

Как это работает? Такая конструкция способна качать воду в бак, который находится на высоте до трех метров. Вода поступает в трубу, один из клапанов пропускает воду вверх, а обратно — нет. Второй клапан стоит наоборот и обеспечивает пульсацию.

Откручиваем один из клапанов, чтобы конструкция начала работать.

Для корректной работы клапана нужна беспрерывная подача воды. Диаметр труб и шлангов может быть любой. Чем шире, тем больше поток воды вы получите. Таким нехитрым способом вы можете устроить регулярный полив своих грядок на огороде, если рядом с участком есть водоем.

Примерка и пайка элементов насоса

Перед тем как приступить к сборке конструкции, стоит примерить детали, рассчитав необходимую длину труб. Если обратить внимание на фотопример ниже, то расположение деталей будет следующим (слева направо):

  • обратный клапан, направленный вниз, отрезок трубы, колено, перемычка;
  • врезка трубы, через которую будет подаваться вода, обратный клапан направлен вверх;
  • правый отвод, через который вода будет поступать из ёмкости, реки или озера.

Особой сложностью конструкция не отличается, однако следует принять во внимание, что приведённые размеры позволят лишь умыться, хотя и при таком диаметре труб насос способен поднять воду на 2-3 м. Для полива можно использовать трубы диаметром 40 или даже 50 мм.

Сборка гидротарана: некоторые нюансы

Для удобства работы с гидротаранным насосом на первый обратный клапан стоит установить дополнительный кран, хотя можно обойтись и обычной заглушкой. Пока она закрыта, вода через насос проходить не будет. На фотопримере ниже можно увидеть уже собранную конструкцию, на которой сверху установлен расширитель.

Теперь стоит разобраться, по какому принципу он работает.

Принцип действия гидротаранного насоса

Подача воды в сам гидротаран производится по чёрному шлангу из резервуара. Если требуется забор из реки или озера, необходимо обустроить всё так, чтобы сам насос находился не менее, чем на метр ниже уровня поверхности воды. Если это условие не соблюдено, работать гидротаран не будет.

Поступающая вода проходит через обратный клапан, направленный вверх, попадая в расширитель, который помогает в перекачке. Далее она поступает через запорную арматуру в более тонкий шланг, по которому уже может подняться на более высокий уровень. Подобную систему можно использовать не только для полива, но и для душевой, если вода в реке достаточно чиста. А вот использование стационарного резервуара здесь будет нерентабельным. Часть воды будет вытекать на землю через обратный клапан, направленный вниз.

Далее можно увидеть верхнюю часть гидротарана и отходящий более тонкий шланг.

Фазы развития гидроудара

Как же развивается явление гидроудара? Рассмотрим самый простой пример — внезапное заполнение жидкостью пустой трубы постоянного сечения, погружённой на некоторую глубину. Один конец этой трубы закрыт жёсткой заглушкой, а другой свободно сообщается с окружающей жидкостью. Кстати, практически то же самое будет, если рассматривать резкое перекрытие установившегося потока в такой же трубе, только там будет отсутствовать первая фаза — заполнение пустой трубы, — а роль заглушки будет играть перекрывшая трубу заслонка.
Схема возникновения гидравлического удара при заполнении жидкостью пустой трубы.
Голубым цветом обозначена внешняя среда с исходным давлением, светло-голубым — область пониженного давления, синим — область повышенного давления (зона гидроудара). Синие стрелки показывают перемещение вещества среды (жидкости), красные — перемещение границы зоны повышенного давления (без существенного перемещения вещества). H— глубина (напор) на входе трубы; h — перепад высот трубы, L — длина трубы от входа до заглушки. Цифрами обозначены фазы развития явления.

Таблица 1. Фазы развития гидравлического удара
№ фазы Название фазы Описание фазы
1 Заполнение трубы Под действием внешнего давления жидкость заполняет трубу, при этом в соответствии с законом Бернулли её давление несколько меньше давления неподвижной среды вне трубы.
2 Встреча с препятствием Жёсткая заглушка внезапно останавливает поток, который ударяется в неё. Однако практически вся жидкость в трубе ещё продолжает своё движение вперёд.
3 Рост зоны повышенного давления Головная часть потока остановилась и её кинетическая энергия перешла в потенциальную энергию упругой деформации жидкости и стенок трубы, вызвав в этой области повышение давления. Но до «хвоста» потока это воздействие ещё не дошло, и там жидкость продолжает двигаться в прежнем направлении. Граница области повышенного давления (ударная волна) перемещается от заглушки ко входу трубы, при достаточной жёсткости трубы эта скорость практически равна скорости распространения упругих колебаний в среде, т.е. скорости звука в жидкости.
4 Максимум повышенного давления Ударная волна достигла входа трубы и вышла в неподвижную среду. Поскольку внешняя среда неподвижна относительно стенок трубы, она уже не добавляет свою кинетическую энергию и не оказывает существенного сопротивления сжатой жидкости в трубе, и та начинает двигаться из зоны повышенного давления наружу. Кроме того, в свободной среде стенки трубы уже не ограничивают и не «фокусируют» ударную волну, так что она распространяется во все стороны, быстро теряя силу. Таким образом, достигнув входа трубы, ударная волна «рассеивается» и «гаснет». Более подробно этот момент рассмотрен ниже.
5 Начало обратного движения Поскольку у входа в трубу давление относительно невысоко, сжатая жидкость двигается туда под действием повышенного давления внутри трубы. При этом потенциальная энергия упругой деформации снова превращается в кинетическую энергию, но движение уже направлено в обратную сторону. В результате граница зоны неподвижной жидкости под повышенным давлением перемещается от входа в трубу обратно к заглушке, оставляя у входа зону немного пониженного давления, в которой жидкость движется обратно ко входу трубы. Скорость перемещения этой границы в случае достаточно жёсткой трубы также равна скорости распространения упругих деформаций в среде, т.е. скорости звука в жидкости, однако перепад давления на границе не такой резкий, как при распространении ударной волны — зона границы существенно шире. Причиной этого являются особенности процесса рассеивания ударной волны у входа в трубу на предыдущей фазе.
При падении давления вся потенциальная энергия упругой деформации снова переходит в кинетическую энергию жидкости (за вычетом неизбежных потерь, которые могут быть весьма малы), поэтому скорость «разряженной» жидкости почти равна её скорости до остановки, только направлена теперь в сторону входа.
6 Окончание сжатия В момент, когда граница зоны пониженного давления достигает заглушки, во всей трубе жидкость снова испытывает пониженное давление и движется обратно ко входу со скоростью, равной скорости потока в трубе в фазе 2.
7 Фаза разрежения (отрыва) Двигаясь в сторону входа трубы, жидкость в силу инерции стремится оторваться от заглушки. Поэтому, если гидроудар был достаточно сильным, то возле заглушки образуется зона разрежения, где жидкость отсутствует и давление близко к нулю (именно вакуум, а не атмосферное давление). Однако жидкость, выходящая из трубы, движется не в пустоту, а в среду, представляющую собой ту же жидкость, только неподвижную. Сопротивление этой среды достаточно быстро затормозит движение жидкости к выходу и вместе с зоной разрежения возле заглушки вновь заставит жидкость двигаться от входа внутрь трубы, тем самым повторяя фазу 1(естественно, уже с меньшей энергией, потери которой, как всегда, неизбежны).
При слабом гидроударе жидкости не удаётся оторваться от заглушки, однако всё равно давление существенно снижается относительно давления вне трубы (настолько, насколько оно повысилось в фазе сжатия). В этом случае выделяют фазы распространения отрицательной ударной волны (границы зоны с низким давлением) ко входу трубы и её возвращения обратно под действием внешнего давления, однако при сильном гидроударе с отрывом жидкости от заглушки появляется ещё и фаза «замирания». Впрочем, самостоятельное значение этих фаз не очень велико, поэтому все их я объединяю в одну фазу разрежения. Чутьниже это рассмотрено более подробно.

Факторы, влияющие на силу гидроудара

Эластичные стенки трубопровода значительно снижают силу гидроудара, достаточно легко увеличивая объём трубы или шланга в месте остановки жидкости. Если труба заполнена воздухом и по мере продвижения жидкости он не успевает покинуть трубу с нужной скоростью, это также способно предотвратить сильный гидроудар, поскольку в этом случае воздух играет роль пневматического амортизатора, в котором плавно повышается давление, и потому он оказывает всё большее сопротивление движению жидкости, постепенно замедляя её. Именно эти принципы использует большинство устройств для защиты трубопроводов от гидроударов.

Следует чётко понимать, что эти факторы лишь растягивают процесс гидроудара во времени, но общая энергия гидравлического удара при этом остаётся прежней. Однако за счёт увеличения времени процесса, снижается его мощность, а значит, и максимальное давление, и максимальное усилие, воздействующее на стенки трубы. Но именно это и является целью защиты от гидроудара — ведь теперь трубу уже не разорвёт!

И, конечно, силу гидроудара снижает более плавное перекрытие потока и уменьшение рабочей скорости движения жидкости в трубе (если необходимо сохранить расход, то для этого придётся увеличить диаметр трубы — скорость уменьшится пропорционально увеличению площади её просвета).

Если же силу гидроудара надо увеличить, то тут рекомендации обратные — как можно более жёсткая (и прочная!) труба, как можно более резкое перекрытие потока и как можно больший разгон жидкости перед остановкой потока.

Особенности явления гидроудара

Гидроудар в силу своей природы имеет несколько существенных особенностей, о которых нельзя забывать.

Высокая скорость процесса

Прежде всего, следует учесть высокую скорость процесса. Поскольку скорость перемещения границ зон с различным давлением при высокой жёсткости трубы и заглушки определяется скоростью распространения упругих деформаций в жидкости, т.е. скоростью звука, всё происходит за очень короткое время.

Скорость звука в жидкостях обычно составляет порядка 1000…1500 м/с (для воды при 4°С — 1.435 км/с, при 45°С ­ 1.51 км/с (максимум), при 100°С — 1.46 км/с), поэтому в трубе с водой длиной 15 метров процесс распространения ударной волны от заглушки до входа или обратно займёт примерно 10 миллисекунд. За это время тело, находящееся в покое, под действием ускорения свободного падения успеет набрать лишь скорость в 9.8 см/сек и пройти путь менее 5 сантиметров. При более коротких длинах эти цифры пропорционально уменьшатся.

Это означает, например, что в горизонтальной трубе за такое время пустота в зоне отрыва не успеет сколько-нибудь существенным образом перераспределиться и останется «сконцентрированной» именно возле заглушки, а не превратится в относительно небольшое снижение уровня жидкости на значительной части длины трубы. Многие другие эффекты, скажем, испарение заметного количества жидкости с границы зоны отрыва в область разрежения и, как следствие, существенное повышение там давления, также не смогут проявиться в полной мере из-за краткости отпущенного им времени.

Условия отрыва жидкости. Сильные и слабые гидроудары

В фазе разрежения отрыв жидкости от заглушки происходит не всегда. Для этого скорость потока должна быть достаточно высокой, а стенки трубы — достаточно жёсткими, чтобы удар получился резким. Если удар окажется слишком слабым (или слишком плавным), то пустой области у заглушки не образуется, хотя в любом случае в фазе разрежения давление внутри трубы, в том числе непосредственно у заглушки, будет меньше, чем давление окружающей жидкости снаружи.

Для того, чтобы жидкость смогла оторваться от заглушки и появилась область отрыва, обратное давление (в идеале, без учёта потерь, равное максимальному повышению давления при сжатии) должно превышать давление среды снаружи. Таким образом, отрыв жидкости с образованием вакуума возможен при выполнении условия

ΔPуд > P0 + ΔPh + ΔPT (1),
где ΔPуд — максимальное повышение давления в фазе сжатия относительно внешнего давления; P0 — абсолютное внешнее давление в резервуаре возле входа в трубу (т.е. давление относительно вакуума, а не атмосферы над поверхностью жидкости); ΔPh — гидростатическая разность давлений между входом в трубу и заглушкой, если труба расположена не горизонтально; ΔPT — необратимые потери давления при сжатии и расширении жидкости и стенок трубы в фазах 26.

Если пренебречь потерями, то для строго горизонтальной трубы критерий возникновения области вакуума будет ещё проще:

ΔPуд > P0 (2).

Может возникнуть вопрос: как же повышение давления при гидроударе может превысить давление на входе в трубу? Однако здесь нет парадокса, так как скачок давления зависит лишь от резкости остановки потока и набранной им к этому моменту кинетической энергии, поэтому жёсткая труба и малосжимаемая жидкость могут обеспечить сильный удар даже при не слишком высокой скорости потока.

Таким образом, гидроудары можно разделить на «сильные», когда образуется область вакуума в зоне отрыва, и «слабые», когда мощности удара для этого не хватает. При этом следует помнить, что речь именно о мощности удара, а не о его энергии, поскольку здесь определяющую роль играет резкость остановки.

Повторные циклы

Как уже было сказано выше, после фазы 7 (разрежения) снова следует фаза 1 — пустая (или разреженная) часть трубы снова заполняется жидкостью под давлением. В результате при гидроударе происходит своеобразный колебательный процесс, естественно, довольно быстро затухающий. При этом весьма важно знать, что же является главным фактором для возникновения повторного удара — разгон жидкости, заполняющей пустоту, возникшую при отрыве её от заглушки в фазе разрежения или упругая реакция внешней среды на возмущения, вызванные отбойным движением жидкости от заглушки ко входу в фазах 46.

Ответ на этот вопрос определяет, является ли отрыв жидкости от заглушки в фазе 7 необходимым условием возникновения повторных циклов или они будут иметь место даже если отрыва не происходит?

Посмотрим, как при гидроударе с течением времени изменяется давление возле заглушки.
Изменение во времени давления возле заглушки при гидроударе.
Слева — сильный удар (с отрывом жидкости от заглушки), справа — слабый (без отрыва). Синей линией показан уровень исходного давления (до начала гидроудара), голубой линией — идеальный характер изменения давления при отсутствии потерь энергии. P0 — давление свободной среды возле входа в трубу; ΔPуд — максимальное повышение давления при гидроударе; t0 — длительность этапа при слабом гидроударе. По материалам сайта gidravl.narod.ru.

На рисунке видно, что при сильном гидроударе (слева) в фазе отрыва давление падает практически до нуля, т.е. образуется вакуум (0.1 МПа ~ 1 атм, давление измерялось относительно атмосферного, поэтому показания в –1 атм как раз и соответствуют абсолютному нулю давления). Однако это не слишком снижает энергию повторных гидроударов, более того, характер их постепенного ослабления не отличается от аналогичного ослабления при слабом гидроударе, показанном на рисунке справа.

При слабом гидроударе (без отрыва жидкости), фазы сжатия и разрежения имеют одинаковую длительность t0, обусловленную временем «путешествия» ударной волны от заглушки ко входу трубы и обратно. В этом случае возмущения не выходят в резервуар сколько-нибудь далеко от входа трубы, и период этих колебаний полностью определяется длиной трубы и скоростью ударной волны.

При сильном гидроударе обратным ходом (отбойной волной) жидкость выбрасывается из трубы с большой силой, и она выходит в резервуар достаточно далеко от входа в трубу, «расталкивая» уже находившуюся там жидкость. В результате этого в трубе возле заглушки освобождается место для зоны отрыва, однако и сила повторного удара обусловлена не только разрежением жидкости в трубе, но и возмущённой жидкостью в резервуаре вокруг входа в трубу. Поэтому повторный удар получается сильным, однако «затишье» между ударами существенно больше длительности каждого удара, поскольку ударная волна выходит далеко за пределы трубы, и этот путь требует дополнительного времени. По мере снижения силы повторных ударов интервал между ними сокращается, и когда скачок давления при очередном повторном гидроударе ΔPуд становится равным давлению вне трубы P0, сравнивается с t0 и в дальнейшем уже не уменьшается.

С точки зрения математики можно сказать, что в каждом цикле гидроудара площади положительного и отрицательного отклонения от уровня давления P0 на графике P(t) должны быть равны, поскольку они пропорциональны энергии, а без учёта потерь энергия стадии сжатия и стадии расширения должна быть одинаковой. И, так как разрежение не может быть отрицательным, то в случае возникновения отрыва это условие соблюдается за счёт увеличения длительности фазы разрежения. Если же отрыва не возникает, то энергия «регулируется» амплитудой скачка давления, так как теперь «вакуумное ограничение» на стадии разрежения перестаёт действовать.

Таким образом, пренебрегая потерями и считая фронты нарастания и спада давления достаточно резкими (близкими к вертикальным), можно записать условие соотношения длительностей стадий сжатия и разрежения возле заглушки в следующем виде:

(P0 – Pс) · tсз = (Pр – P0) · tрз или ΔPс · tсз = –ΔPр · tрз (3),
где P0 — исходное давление до начала гидроудара; Pс — давление на стадии сжатия; t — длительность стадии сжатия возле заглушки; Pр — давление на стадии расширения; t — длительность стадии разрежения возле заглушки; ΔPс — изменение давления на стадии сжатия; ΔPр — изменение давления на стадии расширения.

Размер имеет значение

С увеличением размеров трубы сила гидроудара значительно возрастает, причём для одного и того же давления у входа в трубу этот рост обычно круче линейной зависимости. Здесь мы рассмотрим качественные причины такого поведения (количественные результаты автоматически следуют из расчётов, приведённых в следующих разделах этой страницы).

Дело в том, что энергия гидроудара определяется его длительностью, зависящей от длины и жёсткости трубы, и мощностью, которая прямо зависит от скачка давления, в свою очередь линейно зависимого от скорости потока в момент остановки. Поэтому при той же скорости потока скачок давления будет тем же, но длительность гидроудара, а значит и его общая энергия, возрастут в соответствии с увеличением длины трубы.

Однако при увеличении линейных размеров масса (и, следовательно, кинетическая энергия при той же скорости) возрастает пропорционально объёму, т.е. кубу их изменения, а потери на трение о стенки трубы — пропорционально площади соприкосновения, то есть квадрату изменения размеров. Таким образом, удельные потери энергии на трение на единицу массы жидкости уменьшаются, и потому при том же движущем усилии (внешнем давлении) скорость потока возрастает, а стало быть, увеличивается и скачок давления в момент остановки.

В результате при одном и том же внешнем давлении мы получаем сильный гидроудар в большой трубе и слабый — в маленькой. При этом слишком большое удлинение трубы без увеличения её диаметра также ослабит гидроудар за счёт того, что возрастающее гидравлическое сопротивление снизит скорость потока к моменту остановки. Отсюда следует вывод, что имеется некоторая оптимальная (или, может быть, наоборот — фатальная) длина трубопровода, при которой гидроудар имеет максимальную силу. При меньшей длине поток не успевает разогнаться до максимальной скорости либо длительность гидроудара получается слишком маленькой, при большей — гидравлическое трение отбирает слишком много энергии у движущегося потока, снижая его скорость до «безопасных» величин. Кроме того, если при увеличении диаметра трубы толщина её стенок не увеличится, то жёсткость, а следовательно, скорость ударной волны и скачок давления при гидроударе снижаются. Правда, на столько же возрастает его длительность, — так что общую энергию гидроудара снижение толщины стенок не уменьшает, а вот шансы разрыва трубы увеличиваются!

Для слишком узких трубок большое значение начинают играть поверхностные эффекты, в том числе поверхностное натяжение. Все они препятствуют разгону потока и потому также снижают силу гидроудара. Чтобы получить в капиллярной трубке сколь-нибудь заметный гидравлический удар, надо сильно постараться!

Расчёт параметров гидравлического удара

Наиболее интересны два параметра гидроудара — во-первых, его мощность (либо степень повышения давления) и, во-вторых, длительность стадий сжатия (фазы 26) и расширения (фаза 7), вместе с мощностью определяющих общую энергию гидравлического удара.

Испытания насоса

Пришло время установить и испытать насос. Хочу немного оговориться и сказать, что насос не то чтобы качает воду, а скорее усиливает её напор. Я имею в виду, что для работы насоса необходимо начальное давление.
Для этого установим насос в небольшом ручье. Подключим длинную трубу в несколько метров (это обязательно условие) и будем забирать воду с небольшого возвышения. В итоге к насосу вода будет течь сама.

Ставим ресивер вертикально, латунный клапан должен быть на открытом воздухе.

И насос, щелкая клапанами начинает подавать воду выше уровня забора. Гораздо выше уровня забора воды вначале трубы.

Подводя итоги

На первый взгляд может показаться, что работа гидротарана нарушает все законы физики, однако это не так. Именно пульсация воды, создаваемая первым обратным клапаном, и запирание при помощи второго позволяют всей конструкции функционировать. Ну, а сила потока уже будет зависеть от перепада уровней поверхности воды и расположения гидротарана. Главное – правильно рассчитать необходимый диаметр магистралей. И тогда на участке всегда будет вода для полива, а для её транспортировки не понадобится применения силы или использования топлива и электроэнергии.

Надеемся, что изложенная сегодня информация поможет дачникам и домовладельцам использовать время самоизоляции при карантине с пользой. Ведь изготовление полезных приспособлений гораздо интереснее, чем продавливание дивана перед телевизором. А если эти самоделки впоследствии помогут сберечь семейный бюджет, то это вдвойне приятно. Если у вас остались какие-либо вопросы по теме, смело задавайте их в обсуждениях ниже. Редакция HouseChief обязательно ответит на каждый из них в максимально сжатые сроки. Там же вы можете оставить свои комментарии к статье, выразить личное мнение о прочитанном или поделиться своим опытом изготовления гидротарана, если таковой имеется. Вам понравилась статья? В таком случае не забудьте поставить оценку. Ваше мнение очень важно для нас. Берегите себя.

Источники

  • https://SdelaySam-SvoimiRukami.ru/4253-vodyanoy-nasos-bez-pitaniya.html
  • https://krrot.net/delaem-vodyanoj-nasos-svoimi-rukami/
  • https://HouseChief.ru/gidrotaran-nasos-bez-jelektrichestva-i-topliva.html
  • https://zen.yandex.ru/media/krrot/delaem-vodianoi-nasos—svoimi-rukami-kotoryi-kachaet-vodu—bez-elektrichestva—5db6b03fec575b00b2b5bb12
  • https://dealanenergo.ru/Statiy/gidrotaran-vodyanoy-nasos-bez-lektrichestva

[свернуть]