Что лежит в основе работы

Кавитация обозначает процесс образования парообразных пузырьков в толще воды, чему способствует медленное понижение водяного давления при большой скорости потока. Возникновение каверн или полостей, заполненных паром, может быть вызвано и прохождением акустической волны или излучением лазерного импульса. Замкнутые области воздуха, или кавитационные пустоты, перемещаются водой в область высокого давления, где происходит процесс их схлопывания с излучением волны ударной силы. Явление кавитации не может возникнуть при отсутствии указанных условий.

Физический процесс кавитационного явления сродни закипанию жидкости, но при кипении давление воды и пара в пузырьках является средним по значению и одинаковым. При кавитации давление в жидкости выше среднего и выше парового давления. Понижение же напора носит локальный характер.

При создании нужных условий молекулы газа, которые всегда присутствуют в толще воды, начинают выделяться внутрь образующихся пузырьков. Этот явление проходит интенсивно, так как температура газа внутри полости достигает до 1200ºС из-за постоянного расширения и сжимания пузырьков. Газ в кавитационных полостях содержит большее число молекул кислорода и при взаимодействии с инертными материалами корпуса и других деталей теплогенератора приводит к их скорой коррозии и разрушению.

Исследования показывают, что разрушительному действию агрессивного кислорода подвергаются даже инертные к этому газу материалы – золото и серебро. Кроме того, явление схлопывания воздушных полостей вызывает достаточно шума, что является нежелательной проблемой.

Многие энтузиасты сделали процесс кавитации полезным для создания отопительных теплогенераторов частного дома. Суть системы заключена в замкнутом корпусе, в котором продвигается водяная струя через кавитационное устройство, для получения давления используется обыкновенный насос. В России на первое изобретение отопительной установки был выдан патент в 2013 году. Процесс образования разрыва пузырьков происходит под действием переменного электрического поля. При этом паровые полости являются маленькими по размеру и не взаимодействуют с электродами. Они передвигаются в толщу жидкости, и там происходит вскрытие с выделением дополнительной энергии в теле водяного потока.

Простейшая модель

Рис. 1: Принцип работы кавитационного теплогенератора

Посмотрите на рисунок 1, здесь представлено устройство простейшего кавитационного теплогенератора, который заключается в нагнетании насосом воды к месту сужения трубопровода. При достижении водяным потоком сопла давление жидкости значительно возрастает и начинается образование кавитационных пузырьков. При выходе из сопла пузырьки выделяют тепловую мощность, а давление после прохождения сопла значительно снижается. На практике может устанавливаться несколько сопел или трубок для повышения эффективности.

Идеальный теплогенератор Потапова

Идеальным вариантом установки считается теплогенератор Потапова, который имеет вращающийся диск (1) установленный напротив стационарного (6). Подача холодной воды осуществляется с трубы расположенной внизу (4) кавитационной камеры (3), а отвод уже нагретой с верхней точки (5) той же камеры. Пример такого устройства приведен на рисунке 2 ниже:

Рис. 2: кавитационный теплогенератор Потапова

Но широкого распространения устройство не получило из-за отсутствия практического обоснования его работы.

Статический генераторный насос

Наименование статического теплогенератора оборудование получило условно, что связано с отсутствием деталей вращательного действия. Чтобы создать кавитационные процессы в жидкости применяют конструкцию из сопел.

Воссоздание явления кавитации требует обеспечения высокой скорости перемещения воды, для чего применяют мощный насос центробежного принципа. Насос придает повышенное давление потоку воды, которая устремляется во входное отверстие сопла. Выходной диаметр сопла гораздо уже предыдущего и жидкость получает дополнительную энергию движения, скорость ее увеличивается. На выходе из сопла из-за быстрого расширения воды получаются кавитационные эффекты с образованием полостей газа внутри тела жидкости. Прогревание воды происходит по тому же принципу, что и в роторной модели, только эффективность несколько снижена.

Теплогенераторы статического действия имеют ряд преимуществ перед роторными моделями:

  • конструкция статорного прибора не требует принципиально точной балансировки и подгонки деталей ;
  • механическая подготовительная операция не требует четкой шлифовки;
  • из-за отсутствия подвижных деталей гораздо меньше изнашиваются уплотнительные материалы;
  • эксплуатация оборудования более длительная, до 5 лет;
  • в условиях прихода в негодность сопла, его замена потребует меньше затрат, чем в роторном варианте теплогенератора, который нужно воссоздать заново.

Затраты на подключение

Тепловой насос. Укладка горизонтального контура по ценам МО – 10 000 рублей за смену экскаватора с кубовым ковшом (выбирает до 1 000 м³ грунта за 8 часов). Система для дома в 100 м² будет закопана за 2 дня (справедливо для суглинка, на котором можно снять до 30 Вт тепловой энергии с 1 м.п. контура). Порядка 5 000 рублей потребуется для подготовки контура к работе. В итоге, горизонтальный вариант размещения первичного контура обойдётся в 25 000.

Скважина выйдет дороже (1 000 рублей за погонный метр, с учётом монтажа зондов, обвязки их в одну магистраль, заправкой теплоносителем и опрессовкой.), но значительно выгоднее для будущей эксплуатации. При меньшей занятой площади участка возрастает отдача (для скважины 50 м – минимум 50 Вт с метра). Покрываются потребности насоса, появляется дополнительный потенциал. Поэтому вся система будет работать не на износ, а с некоторым запасом мощности. Разместить 350 метров контура в вертикальных скважинах – 350 000 рублей.

Газовый котёл. В Московской области за подключение к газовой сети, работы на участке и монтаж котла «Мособлгаз» запрашивает от 260 000 рублей.

Электрический котел. Подключение трёхфазной сети обойдётся в 10 000 рублей: 550 – местным электросетям, остальное – на распределительный щит, счётчик и прочее наполнение.

Потребление

Для работы ТН с тепловой мощностью 9 кВт требуется 2.7 кВт/ч электроэнергии – 9 руб. 53 коп. в час,

Удельная теплота при сгорании 1 м³ газа – те же 9 кВт. Бытовой газ для МО выставлен по 5 руб. 14 коп. за куб.

Электрокотёл потребляет 9 кВт/ч = 31 руб. 77 коп. в час. Разница с ТН – почти в 3,5 раза.

Основные характеристики

При выборе оборудования из всего многообразия характеристик обратите внимание на следующие характеристики.

Основные характеристики тепловых насосов
Характеристики Диапазон значений Особенности
Тепловая мощность, кВт До 8 Помещения площадью не более 80 – 100 м², при высоте потолка не более 3 м.
8-25 Для одноуровневых дачных домов с потолком 2.5м, площадью от 50 м²; коттеджей для ПМЖ, до 260 м².
Свыше 25 Целесообразно рассматривать для 2-3 уровневых жилых домов с потолками 2.7м; промышленных объектов – не более 150 м², при высоте потолка в 3 и более.
Потребляемая мощность основного оборудования (предельное потребление вспомогательных элементов) кВт/ч От 2 (от 6) Характеризует энергопотребление компрессора и циркуляционных насосов (тэна).
Схема работы Воздух-воздух Трансформированная тепловая энергия воздуха передаётся в помещение потоком прогретого воздуха через сплит-систему.
Воздух — вода Энергия, снятая с пропущенного через прибор воздуха, передаётся теплоносителю жидкостной отопительной системы.
Рассол-вода Передачу тепловой энергии от возобновляемого источника выполняет натриевый или кальциевый раствор.
Вода-вода По магистрали открытого первичного контура грунтовые воды несут тепловую энергию прямо к теплообменнику.
Температура теплоносителя на выходе, °С 55-70 Показатель важен для расчёта потерь на длинном отопительном контуре и при организации дополнительной системы горячего теплоснабжения.
Сетевое напряжение, V 220, 380 Однофазные – потребляемая мощность не более 5.5 кВт, только для стабильной (малонагруженной) бытовой сети; самые дешёвые – только через стабилизатор. Если есть сеть 380 V, то трёхфазные приборы предпочтительнее – больший диапазон мощностей, меньше вероятность «просадить» сеть.

Применение

В промышленности и в быту кавитационные теплогенераторы нашли реализацию в самых различных сферах деятельности. В зависимости от поставленных задач они применяются для:

  • Отопления – внутри установок происходит преобразование механической энергии в тепловую, благодаря чему нагретая жидкость двигается по системе отопления. Следует отметить, что кавитационные теплогенераторы могут отапливать не только промышленные объекты, но и целые поселки.
  • Нагревание проточной воды – кавитационная установка способна быстро нагревать жидкость, за счет чего может легко заменять газовую или электрическую колонку.
  • Смешение жидких веществ – за счет разрежения в слоях с получением мелких полостей такие агрегаты позволяют добиться надлежащего качества перемешивания жидкостей, которые естественным образом не совмещаются из-за разной плотности.

Плюсы и минусы

В сравнении с другими теплогенераторами, кавитационные агрегаты отличаются рядом преимуществ и недостатков.

К плюсам таких устройств следует отнести:

  • Куда более эффективный механизм получения тепловой энергии;
  • Расходует значительно меньше ресурсов, чем топливные генераторы;
  • Может применяться для обогрева как маломощных, так и крупных потребителей;
  • Полностью экологичен – не выделяет в окружающую среду вредных веществ во время работы.

К недостаткам кавитационных теплогенераторов следует отнести:

  • Сравнительно большие габариты – электрические и топливные модели имеют куда меньшие размеры, что немаловажно при установке в уже эксплуатируемом помещении;
  • Большая шумность за счет работы водяного насоса и самого кавитационного элемента, что затрудняет его установку в бытовых помещениях;
  • Неэффективное соотношение мощности и производительности для помещений с малой квадратурой (до 60м2 выгоднее использовать установку на газу, жидком топливе или эквивалентной электрической мощности с нагревательным тэном).

Типы теплосборников для тепловых насосов

Источники тепловой энергии для тепловых насосов могут быть различными — геотермальными (замкнутого и открытого типа), воздушными, использующими вторичное тепло. Рассмотрим каждый из этих источников подробнее.

Геотермальные тепловые насосы потребляют тепловую энергию грунта либо грунтовых вод и подразделяются на два типа — замкнутый и открытый. Замкнутые тепловые источники подразделяются на:

  • Горизонтальные, при этом собирающий тепло коллектор располагается кольцами или зигзагами в траншеях глубиной от 1,3 метра и более (ниже глубины промерзания). Данный метод размещения контура теплосборника эффективен при малой площади земельного участка.
Геотермальное отопление с горизонтальным теплосборником
  • Вертикальные, т. е. коллектор теплосборника размещается в вертикальные скважины, погружённые в грунт на глубину до 200 м. К этому методу размещения коллектора прибегают в случаях, если нет возможности уложить контур горизонтально или имеется угроза нарушения ландшафта.
Геотермальное отопление с вертикальным теплосборником
  • Водные, при этом коллектор контура располагается зигзагообразно либо кольцевидно на дне водоёма, ниже уровня его промерзания. По сравнению с бурением скважин данный метод наиболее дёшев, однако зависит от глубины и общего объёма воды в водоёме, в зависимости от региона.

В тепловых насосах открытого типа для теплообмена используется вода, которая по прохождении через тепловой насос сбрасывается обратно в грунт. Использовать данный метод возможно лишь при условии химической чистоты воды и при допустимости использования грунтовых вод в этой роли с точки зрения закона.

Геотермальное отопление открытого типа

В воздушных контурах, соответственно, в качестве источника тепловой энергии используется воздух.

Отопление воздушным тепловым насосом

Вторичные (производные) источники тепла используются, как правило, на предприятиях, рабочий цикл которых связан с выработкой сторонней (паразитарной) тепловой энергией, требующей дополнительной утилизации.

Первые модели тепловых насосов были полностью схожи с описанной выше конструкцией, изобретённой Робертом Уэббером — медные трубы контура, выступавшего одновременно в роли внешнего и внутреннего, с циркулирующим в них хладагентом погружались в грунт. Испаритель в такой конструкции размещался под землёй на глубине, превышающей глубину промерзания или в пробуренные под углом либо вертикальные скважины (диаметр от 40 до 60 мм) на глубину от 15 до 30 м. Контур прямого обмена (он получил такое название) позволяет разместить его на небольшой площади и при использовании труб малого диаметра обойтись без промежуточного теплообменника. Прямой обмен не требует принудительной прокачки теплоносителя, раз нет необходимости в циркуляционном насосе, то и электроэнергии тратится меньше. Кроме того, тепловой насос с контуром прямого обмена можно эффективно использовать даже в условиях низких температур — любой объект излучает тепло, если его температура выше абсолютного нуля (-273,15 °С), а хладагент способен испаряться при температуре до -40 °С. Недостатки такого контура: большие потребности в хладагенте; высокая стоимость медных труб; надёжное соединение медных секций возможно лишь методом пайки, иначе утечки хладагента не избежать; потребность в катодной защите в условиях кислых почв.

Забор тепла от воздушной среды более всего подходит для жаркого климата, поскольку при минусовой температуре его эффективность серьёзно понизится, что потребует дополнительных источников отопления. Преимущество воздушных тепловых насосов — в отсутствии необходимости дорогостоящего бурения скважин, поскольку внешний контур с испарителем и вентилятором размещается на участке неподалёку от дома. Кстати, представителем воздушного одноконтурного теплового насоса является любая моноблочная или сплит-система кондиционирования воздуха. Стоимость воздушного теплового насоса мощностью, к примеру, 24 кВт составляет порядка 163000 руб.

Воздушный тепловой насос

Тепловая энергия из водоёма извлекается путём укладки контура, выполненного из пластиковых труб, на дно реки или озера. Глубина укладки от 2-х метров, трубы прижимаются ко дну грузом из расчета 5 кг на метр длины. С каждого погонного метра такого контура извлекается порядка 30 Вт тепловой энергии, т. е. для теплового насоса мощностью 10 кВт понадобится контур общей протяжённостью 300 м. Достоинства такого контура в относительно невысокой стоимости и простоте монтажа, недостатки — при сильных заморозках получение тепловой энергии невозможно.

Укладка контура теплового насоса в водоём

Для извлечения тепла из грунта контур из труб ПВХ помещается в котлован, отрытый на глубину, превышающую глубину промерзания не менее чем на полметра. Дистанция между трубами должна составить около 1,5 м, теплоноситель, циркулирующий в них — антифриз (обычно водный рассол). Эффективная работа грунтового контура напрямую связана с влажностью грунта в точке его размещения — если грунт песчаный, т. е. не способный удерживать воду, то длину контура необходимо увеличить примерно вдвое. С погонного метра грунтового контура тепловой насос может извлечь в среднем от 30 до 60 Вт тепловой энергии, в зависимости от климатической зоны и типа грунта. 10 кВт тепловому насосу потребуется 400 метровый контур, уложенный на участке площадью 400 м2. Стоимость теплового насоса с грунтовым контуром составляет порядка 500000 руб.

Укладка горизонтального контура в грунт

Получение тепла из скальной породы потребует либо прокладки скважин диаметром от 168 до 324 мм на глубину от 100 метров, либо выполнение нескольких скважин меньшей глубины. В каждую скважину опускается контур, состоящий из двух пластиковых труб, соединённых в нижней точке металлической U-образной трубой, выступающей в роли груза. По трубам циркулирует антифриз — только 30% раствор спирта этилового, поскольку в случае утечки он не нанесёт вреда экологии. Скважина с установленным в ней контуром со временем заполнится грунтовыми водами, которые будут подводить тепло к теплоносителю. Каждый метр такой скважины даст около 50 Вт тепловой энергии, т. е. для теплового насоса мощностью 10 кВт потребуется пробурить 170 м скважины. Для получения большей тепловой энергии бурить скважину глубже 200 м не выгодно — лучше проделать несколько более мелких скважин на дистанции 15–20 м между ними. Чем больше диаметр скважины, тем на меньшую глубину её необходимо бурить, при этом достигается больший забор тепловой энергии — порядка 600 Вт с погонного метра.

Монтаж геотермального зонда

По сравнению с контурами, размещёнными в грунте или водоёме, контур в скважине занимает минимум места на участке, саму скважину можно выполнить в любом типе грунта, в т. ч. по скальной породе. Теплоотдача скважинного контура будет стабильной в любое время года и при любой погоде. Однако окупаемость такого теплового насоса займёт несколько десятилетий, поскольку его установка обойдётся домовладельцу более чем в миллион рублей.

Виды

Основная задача кавитационного теплогенератора – образование газовых включений, а от их количества и интенсивности будет зависеть качество нагрева. В современной промышленности существует несколько видов таких теплогенераторов, отличающихся принципом выработки пузырьков в жидкости. Наиболее распространенными являются три вида:

  • Роторные теплогенераторы – рабочий элемент вращается за счет электропривода и вырабатывает завихрения жидкости;
  • Трубчатые – изменяют давление за счет системы труб, по которым движется вода;
  • Ультразвуковые – неоднородность жидкости в таких теплогенераторах создается за счет звуковых колебаний низкой частоты.

Помимо вышеперечисленных видов существует лазерная кавитация, но промышленной реализации этот метод еще не нашел. Теперь рассмотрим каждый из видов более детально.

Роторный теплогенератор

Состоит из электрического двигателя, вал которого соединен с роторным механизмом, предназначенным для создания завихрений в жидкости. Особенностью роторной конструкции является герметичный статор, в котором и происходит нагревание. Сам статор имеет цилиндрическую полость внутри – вихревую камеру, в которой происходит вращение ротора. Ротор кавитационного теплогенератора представляет собой цилиндр с набором углублений на поверхности, при вращении цилиндра внутри статора эти углубления создают неоднородность в воде и обуславливают протекание кавитационных процессов.

Рис. 3: конструкция генератора роторного типа

Количество углублений и их геометрические параметры определяются в зависимости от модели вихревого теплогенератора. Для оптимальных параметров нагрева расстояние между ротором и статором составляет порядка 1,5мм. Данная конструкция является не единственной в своем роде, за долгую историю модернизаций и улучшений рабочий элемент роторного типа претерпел массу преобразований.

Одной первых эффективных моделей кавитационных преобразователей был генератор Григгса, в котором использовался дисковый ротор с несквозными отверстиями на поверхности. Один из современных аналогов дисковых кавитационных теплогенераторов приведен на рисунке 4 ниже:

Рис. 4: дисковый теплогенератор

Несмотря на простоту конструкции, агрегаты роторного типа достаточно сложные в применении, так как требуют точной калибровки, надежных уплотнений и соблюдения геометрических параметров в процессе работы, что обуславливает трудности их эксплуатации. Такие кавитационные теплогенераторы характеризуются достаточно низким сроком службы – 2 — 4 года из-за кавитационной эрозии корпуса и деталей. Помимо этого они создают достаточно большую шумовую нагрузку при работе вращающегося элемента. К преимуществам такой модели относится высокая продуктивность – на 25% выше, чем у классических нагревателей.

Трубчатые

Статический теплогенератор не имеет вращающихся элементов. Нагревательный процесс в них происходит за счет движения воды по трубам, сужающимся по длине или за счет установки сопел Лаваля. Подача воды на рабочий орган осуществляется гидродинамическим насосом, который создает механическое усилие жидкости в сужающемся пространстве, а при ее переходе в более широкую полость возникают кавитационные завихрения.

В отличии от предыдущей модели трубчатое отопительное оборудование не производит большого шума и не изнашивается так быстро. При установке и эксплуатации не нужно заботиться о точной балансировке, а при разрушении нагревательных элементов их замена и ремонт обойдутся куда дешевле, чем у роторных моделей. К недостаткам трубчатых теплогенераторов относят значительно меньшую производительность и громоздкие габариты.

Ультразвуковые

Данный тип устройства имеет камеру-резонатор, настроенную на определенную частоту звуковых колебаний. На ее входе устанавливается кварцевая пластина, которая производит колебания при подаче электрических сигналов. Вибрация пластины создает волновой эффект внутри жидкости, который достигая стенок камеры-резонатора и отражается. При возвратном движении волны встречаются с прямыми колебаниями и создают гидродинамическую кавитацию.

Рис. 5: принцип работы ультразвукового теплогенератора

Далее пузырьки уносятся водным потоком по узким входным патрубкам тепловой установки. При переходе в широкую область пузырьки разрушаются, выделяя тепловую энергию. Ультразвуковые кавитационные генераторы также обладают хорошими эксплуатационными показателями, так как не имеют вращающихся элементов.

Сводная таблица моделей

В статье мы рассмотрели наиболее популярные модели, выявили их сильные и слабые стороны. С перечнем моделей можете ознакомиться в следующей таблице:

Сводная таблица моделей
Модель (страна производитель) Особенности Цена, руб.

Тепловые насосы для отопления небольших помещений или под ГВС

1. Huch EnTEC VARIO КНР S2-E (Германия) Система «воздух-вода»; работает от однофазной сети; выступающая конденсационная линия вставляется в бак с водой. 184 493
2. NIBE F1155-6 EXP (Швеция) «Рассол-вода»; питание от трёхфазной сети; вариативное управление мощностью; возможность подключения дополнительного оборудования – рекуператора, разнотемпературного оборудования. 355 161
3. Fujitsu WSYA100DD6 (Япония) Тепловой насос типа «воздух – вода» с питанием от сети 220V и функцией защиты от замерзания. 524 640
Оборудование для отопительных систем коттеджей под ПМЖ
4. Vaillant geoTHERM VWW 61/3 (Германия) Схема «вода – вода». Для того чтобы ТН мог выдавать стабильные 62 °С теплоносителя в системе отопления, возможности комплекта из компрессора и насосов (1.5 кВт) дополняет электронагреватель мощностью в 6 кВт. 408 219
5. LG Therma V AH-W096A0 9 кВт (Корея) На базе схемы «воздух-вода», в одном приборе, состоящим из двух блоков, реализованы потенциалы охладительного и нагревательного устройств. 275 000
6. STIEBEL ELTRON WPF 10MS (Германия ) «рассол-вода», прибор прогревает теплоноситель для радиаторов до 60 °С, может использоваться при организации каскадных систем отопления. 323 300
7. Daikin EGSQH (Япония) В одном корпусе с геотермальным насосом размещён накопительный бак для системы горячего водоснабжения, на 180 литров теплоносителя 1 607 830
Мощные тепловые насосы для нужд систем отопления и горячего водоснабжения
8. WATERKOTTE EcoTouch DS 5027.5 Ai (Германия) Возможен отбор тепла от грунта и грунтовых вод; возможны эксплуатация в составе каскадных систем и удалённое управление; работает от трёхфазной сети. 708 521
9. DANFOSS DHP-R ECO 42 (Швеция) 9.6= 42 65 380 «рассол-вода»; управление мощностью компрессора и частотой вращения циркуляционных насосов осуществляется посредством частотной регулировки; дополнительный теплообменник; сеть – 380 V. 1 180 453
10. Viessmann Vitocal 300-G WWC 110 (Германия) схема работы «вода-вода»; встроенные насосы первичного и вторичного контура; предусмотрена возможность подключения гелиосистем. 630 125

Технология работы теплогенератора отопления

Насос повышает давление воды и подает его в рабочую камеру, патрубок которой соединен с ним при помощи фланца.

В рабочем корпусе вода должна получить увеличенную скорость и давление, что осуществляется при помощи труб различного диаметра, сужающихся по ходу потока. В центре рабочей камеры происходит смешение нескольких напорных потоков, приводящее к явлению кавитации.

Чтобы можно было контролировать скоростные характеристики водного потока, на выходе и ходе рабочей полости устанавливают тормозные устройства.

Вода передвигается к патрубку в противоположном конце камеры, откуда поступает в возвратном направлении для повторного использования при помощи насоса циркуляционного действия. Нагрев и получение тепла происходит за счет движения и резкого расширения жидкости на выходе из узкого отверстия сопла.

Положительные и отрицательные свойства теплогенераторов

Кавитационные насосы относят к простым устройствам. В них происходит преобразование механической двигательной энергии воды в тепловую, которая расходуется на отопление помещения. Прежде чем построить кавитационный агрегат своими руками следует отметить плюсы и минусы такой установки. К положительным характеристикам относят:

  • эффективное образование тепловой энергии;
  • экономный в работе за счет отсутствия топлива как такового;
  • доступный вариант приобретения и изготовления своими руками.

Теплогенераторы имеют недостатки:

  • шумная работа насоса и явления кавитации;
  • материалы для производства не всегда достать просто;
  • использует приличную мощность для помещения в 60– 80 м2;
  • занимает много полезного пространства комнаты.

Список деталей и приспособлений для создания генератора тепла:

  •  для измерения давления на входе и выходе из рабочей камеры нужны два манометра;
  • термометр измерения температуры входной и вытекающей жидкости;
  • вентиль для удаления воздушных пробок из системы отопления;
  • входной и выходной патрубки с кранами;
  • гильзы под термометры.

Выбор насоса циркуляционного действия

Для этого нужно определиться с требуемыми параметрами устройства. Первой характеристикой является возможность работы насоса с высокотемпературными жидкостями. Если пренебречь таким условием, то насос быстро выйдет из строя.

Далее нужно выбрать рабочее давление, которое может создавать насос.

Для теплогенератора достаточно, чтобы при входе жидкости сообщалось давление в 4 атмосферы, можно поднять такой показатель до 12 атмосфер, что увеличит скорость нагрева жидкости.

Производительность насоса существенного влияния на скорость нагрев оказывать не будет, так как при работе жидкость проходит через условно узкий диаметр сопла. Обычно транспортируется до 3–5 кубических метров воды в час. Гораздо большее влияние на работу теплогенератора будет иметь коэффициент перехода электричества в тепловую энергию.

Изготовление кавитационной камеры

Классическим примером является выполнение приспособление в виде сопла Лаваля, которое модернизируется мастером, изготовляющим генератор своими руками. Особое внимание следует уделить выбору размера сечения проходного канала. Оно должно обеспечить максимальный перепад давления жидкости. Если устроить наименьший диаметр, то вода будет вылетать из сопла под большим давлением, и процесс кавитации будет происходить более активно.

Но в таком случае будет уменьшен поток воды, что приведет к смешиванию ее с холодными массами. Маленькое отверстие сопла также работает на увеличение числа воздушных пузырьков, что увеличивает шумовой эффект работы и может привести к тому, что пузырьки начнут образовываться уже в камере насоса. Это уменьшит срок его службы. Наиболее приемлемым, как показала практика, считается диаметр 9– 16 мм.

По форме и профилю сопла бывают цилиндрической, конусной и закругленной формы. Однозначно нельзя сказать, какой выбор будет более эффективным, все зависит от остальных параметров установки. Главное, чтобы вихревой процесс возникал, уже на этапе начального входа жидкости в сопло.

Изготовление водяного контура

Предварительно следует составить схематично протяженность контура и его особенности, все это перенести на пол мелом. Принципиально о контуре можно сказать, что он представляет собой изогнутую трубу, которая присоединяется к выходу их кавитационной камеры, а потом жидкость подается снова на вход. В качестве дополнительных приборов подсоединяются два манометра, две гильзы, в которые устанавливают термометр. Также в контуре присутствует вентиль для сбора воздуха.

Вода в контуре поступает против часовой стрелки. Для регулирования давления ставим вентиль между входом и выходом. Применяется труба диаметром 50, что характерно для совпадения с размером патрубков.

Старые модели теплогенераторов работали без установки сопел, повышение напора воды было предусмотрено за счет разгона воды в трубопроводе достаточно большой протяженности. Но в нашем случае не стоит применять слишком большую длину труб.

Испытание генератора

Насос подключают к электричеству, а радиаторы — к системе отопления. После того как оборудование установлено, можно приступить к испытаниям. Осуществляем включение в сеть и двигатель начинает работу. При этом стоит обратить внимание на показание манометров давления и установить нужную разницу с помощью вентиля между входом и выходом воды. Разница атмосфер должна быть в диапазоне от 8 до 12 атмосфер.

После этого пускаем воду и наблюдаем за температурными параметрами. Достаточным будет нагревание в системе за десять минут на 3–5ºС за минуту. За небольшой промежуток времени нагрев достигает 60ºс. Наша система вместе с насосом запитана 15 литрами воды. Этого вполне достаточно для эффективной работы.

Для применения в быту теплогенераторов достаточно немного желания и навыков сборщика, так как все устройства применяются в готовом виде. А эффективность не заставит себя ждать. 

На что смотреть при обустройстве такого отопления?

Существует большое количество различных модификаций тепловых насосов, предназначенных для помещений любого назначения и размера, а также работающих в разных условиях. Оборудование предназначено для отапливания домов общей площадью 50 до 150 квадратных метров.

Ориентир №1 – жесткость воды

Качество воды скважины или водоема играет важную роль при выборе оборудования. Не все модели способны работать на жесткой воде, содержащей большое количество марганца и железа.

Высокая концентрация этих элементов вредит системе – на трубах быстрее образовывается коррозия, что ведет к уменьшению КПД оборудования и сроков его эксплуатации.

Поэтому перед покупкой теплового насоса берут пробу воды и делают ее анализ на наличие этих и других микроэлементов – сероводорода, аммиака, хлора и т.д. Обычно если в пруду температура превышает +13 градусов, то с большей долей вероятности в воде много ионов железа и марганца.

Таким образом, тепловой насос вода-вода подбирается с учетом жесткости воды. Есть системы, элементы которой максимально защищены от коррозии, но стоят они дороже.

Ориентир №2 – режим работы

Тепловой насос может использоваться в качестве единственного источника тепла или взаимодействовать с другими системами. Поэтому перед выбором модели важно определить, в каком режиме устройство будет работать.

Всего существует два типа функционирования системы:

  • Моновалентный. Приборы обладают большой мощностью, подходят для отапливания дома.
  • Бивалентный. Менее производительные устройства, дополняют основное обогревательное оборудование.

Для сооружения автономной системы с основным нагревательным агрегатом вода-вода, нужен моновалентный тип.

Ориентир №3 – мощность насоса

Мощность – важный показатель при выборе теплового насоса, так как от него зависит производительность системы. Чем выше мощность, тем выше КПД оборудования, но и расход электроэнергии больший.

Производительность теплового насоса вода-вода подбирается, исходя из реальных потребностей

При выборе устройства с недостаточной мощностью эффективность системы упадет в случае, если теплопотери дома превысят количество отдаваемой системой энергии. Тепловой насос может работать круглосуточно, но эффекта от него не будет из-за понижения температуры воды.

Когда теплопотери постройки ниже, чем теплоотдача системы, то насос обычно автоматически запускается на несколько минут, нагревает воду до установленной температуры, транспортирует ее по системе. После чего выключается до момента, когда температура понизится на несколько градусов. Затем цикл повторяется.

Ориентир №4 – функцинал конкретной модели

Тепловые насосы могут обладать дополнительными функциями, это:

  • Система автоматического управления, которая позволит регулировать микроклимат помещения по вкусу. Управление обычно осуществляется с помощью дистанционного пульта.
  • Функция нагрева воды для горячего водоснабжения.
  • Шумоизоляционный корпус.
  • Возможность подключения к другим системам отопления, солнечным коллекторам, что сделает оборудование для обогрева полностью автономным.

Длительность эксплуатации тепловых насосов вода-вода обычно превышает 30 лет.

Не менее важным при выборе оборудования считают стоимость установки и монтажа.

Стоимость систем отопления с тепловым насосом

При выборе теплового насоса в качестве основного элемента системы отопления следует помнить, что итоговая стоимость будет включать не только цену самого насоса (оборудования), но и затраты на дополнительные инженерные системы, расходные материалы и монтажные работы.

Как уже говорилось, самыми недорогими являются насосы «воздух-воздух». Цена оборудования здесь начинается от 35 000 рублей за высокоэффективный агрегат для помещения до 20–30 м2: данную стоимость можно экстраполировать и на большие площади. Однако как полноценная система обогрева данные тепловые насосы могут применяться исключительно в южных регионах, в России это актуально для климатических зон Черноморского побережья Кавказа и Крыма с расчетными зимними температурами в диапазоне от –5ºС до –7ºС. Как правило, цена монтажа подобного теплового насоса не превышает стоимость монтажа кондиционера сплит-системы и варьируется от 7500 до 16 000 рублей. Также следует понимать, что согласно требованиям СНиП (строительных норм и правил), действующих в РФ, применение системы воздушного отопления в жилых и административных помещениях требует обязательного наличия 100% резервирования мощности воздушного обогрева. Поэтому тепловые насосы «воздух-воздух», как правило, используются в частном секторе.

Обогрев и система ГВС дома с площадью около 100–150 м2 с помощью теплового насоса «воздух-вода» потребуют более серьезных затрат. Во-первых, кроме насоса необходимо приобрести дополнительное оборудование: расширительные баки, циркуляционный насос, бак косвенного нагрева (бойлер), а также оснастить обогреваемые зоны высокоэффективными доводчиками — тепловыми конвекторами/радиаторами и/или обустроить в них систему теплых (водяных) полов. Элементы теплового насоса, а также потребители подключаются между собой посредством водяных трубопроводов, а значит, установка данной системы должна быть совмещена со строительством или реконструкцией объекта. Кроме того, придется немало заплатить за монтаж и пусконаладочные работы. В среднем итоговая цена решения для дома с площадью около 100 м2 составит от 500 000 рублей при весьма скромном бюджете.

Самыми дорогими являются геотермальные насосы. В этом случае придется потратиться и на само оборудование, и на монтаж, в который входят земляные работы, обустройство скважин и коллекторов, ввод трубопроводов в дом, установка и обвязка самого насоса, монтаж вспомогательного оборудования (радиаторы, конвекторы, теплые полы), плюс подключение всего комплекса устройств и пусконаладка.

В среднем оборудование и его установка для дома площадью 100 м2 будет стоить от 700 000 рублей, для дома в 200 м2 — от 1 млн рублей.

Тепловые насосы — современный, экономичный и экологичный способ получения тепловой энергии. Окупаемость тепловых насосов весьма высока, и при правильной организации системы отопления объекта, а также при должном утеплении стен и перекрытий здания это может стать замечательной альтернативой традиционным для России электрическим и дизельным котлам, а также котлам на сжиженном газе и пеллетном топливе. В случае установки теплового насоса для потребителя более актуальным становится вопрос обеспечения стабильного основного электроснабжения объекта, а также наличия аварийного источника электричества: при длительном отключении электроэнергии работа теплового насоса должна поддерживаться с помощью автономного генератора.

Расчет необходимой мощности теплового насоса

Перед покупкой системы важно предварительно составить проект и вычислить необходимую мощность оборудования. Производительность высчитывается с учетом фактических потребностей в тепловой энергии. Берутся во внимание расходы тепла, теплопотери дома и наличие или отсутствие контура ГВС.

Алгоритм расчета:

  1. Вычисляем общую площадь отапливаемых помещений.
  2. Определяемся с необходимым количеством энергии для отопления. Оптимальный показатель на 1 квадратный метр – 0,07 кВт.
  3. Чтобы протопить дом на N квадратных метров, понадобиться N*0,07 кВт.
  4. Для ГВС к полученному числу добавляют дополнительно 15-20%, то есть N*0,07*0,85 или N*0,07*0,80.

Это расчет будет оптимальным для помещений с потолками, не превышающими высоту 2,7 м. Более точные вычисления сделают специалисты во время составления проекта.

Подготовительные работы перед эксплуатацией

Подготовка к сборке, подключению и вводу в эксплуатацию теплового насоса из серии вода-вода включает ряд стандартных этапов, с которыми мы далее ознакомимся.

Выбор оптимального источника воды

Следует отметить, что далеко не каждый открытый источник или водяная скважина подойдут для бесперебойного функционирования теплового насоса. Качество воды играет важную роль, но проблему загрязненности помогут решить фильтры.

Допустимо использовать водоем или пруд, расположенный в радиусе 100 метров от постройки. Если подобного источника нет, то возникает необходимость бурения скважин.

Выбор источника для теплового насоса следует ориентировать на простоту и стоимость использования. В случае расположенного рядом открытого водоема разумней использовать его

Поведение открытого источника более предсказуемо, чем грунтовых вод, поэтому при возможности предпочтение лучше отдать водоемам.

Установка тепловой системы с использованием скважины

Для установки системы с использованием теплового насоса понадобится две скважины. Одну из скважин принято называть дебетовой. Именно в нее погружается специальный насос, с помощью которого происходит отбор воды для последующей обработки в системе. Вторая скважина – приемная. В нее сливается охлажденная вода.

Сливная и подающая скважины должны располагать друг от друга на расстоянии не менее 15 метров

Глубина дебетовой скважины не должна превышать 50 метров. Чем глубже располагается источник воды, тем мощнее потребуется насос для ее подачи, что увеличит количество расходуемой энергии.

Устройство дебетовой скважины

Перед началом эксплуатации дебетовой скважины важно узнать, сколько воды она способна дать и какое количество жидкости необходимо, чтобы обеспечить теплом все помещение. Чем выше температура воды, тем меньше ее понадобится для обогрева.

Важно предварительно рассчитать объем V, который нужно выкачивать из скважины в течение часа для обогрева помещения. Допустим, есть насос, теплопроизводительность которого равна некоторому числу Q кВт, а потребляемая мощность – числу P кВт. Также понадобиться узнать температуру грунтовых вод (t1) и их температуру после темплообмена (t2).

Тогда формула расчета объема необходимого количества воды за час выглядит так:

V = (Q-P)/(t1-t2).

Определить способность дебетовой скважины выдавать нужный объем воды аналитически невозможно, поэтому проводят ее тестирование. В течение 3 дней насос бесперебойно перекачивает воду из скважины. Таким образом осуществляется проверка и приемной скважины на возможность принимать необходимое количество воды при высокой нагрузке.

Важно понимать, что грунтовые воды ведут себя непредсказуемо, поэтому воды из дебетовой скважины может со временем стать меньше. Например, весной наблюдаются приливы, а зимой, наоборот, вода убывает. Если воды в скважине не хватает, то система автоматически отключается, отопление не происходит.

Особенности приемной скважины

Приемный трубчатый колодец располагают ниже по течению подземных вод. Определить, в каком направлении движется вода, аналитически невозможно. Поэтому на практике выбирают произвольную скважину в качестве дебетовой и запускают в нее погружной насос.

Если во время эксплуатации системы уровень воды не опускается, то выбор сделан правильно. Если уровень опустился, а температура воды понизилась, то необходимо поменять скважины местами – перенести погружной насос в другое отверстие.

Сливную трубу в приемную скважину необходимо погрузить на несколько сантиметров в воду, не доходя до дна. Если сбрасывать отработанную жидкость сверху, то это приведет к заболачиванию. Трубчатый колодец может прекратить принимать воду и забиться.

Результат грозит переливом, а в зимнее время возможным обледенением. Лучшим вариантов для приемного источника является река или пруд. Если данных объектов рядом нет, то возникает необходимость бурить еще одну или несколько приемных скважин, чтобы подстраховаться на случай перелива.

На рисунке продемонстрирован пример использования одной скважины в качестве приемной и дебетовой

Узнать, будет ли скважина принимать воду, невозможно ни аналитическим, ни тестовым способом. Практика показывается, что сливная скважина может бесперебойно поглощать воду долгие годы, а может и вовсе выйти из строя за один сезон.

Существуют технологии, позволяющие использовать одну скважину в качестве дебетовой и приемной, но этот метод не эффективен – эксплуатация будет сопровождаться трудностями, возможно понижение температуры воды, заболачивание и ряд других проблем.

Устройство системы с использованием водоема

Выбранный пруд должен быть достаточно глубоким, чтоб нижние слои воды не промерзали во время сильных морозов. В Южных регионах оптимальная глубина составит примерно 1 метр, в Северных потребуется источник с глубиной от 3 метров. Также пруд должен быть стабильным – недопустимы колебания уровня воды, ее уменьшение.

К водоему ведется два трубопровода – дебетовый и приемный. В приемный устанавливается погружной насос

В качестве труб рекомендуется использовать модели из ПНД, отличающиеся долговечностью и надежностью. Важно защитить трубы от промерзания, дополнительно утеплив их, и от прорывов.

Особенности эксплуатации такого теплового насоса

Раз в год необходимо проводить самостоятельный визуальный осмотру узлов насоса, выполнять рекомендации по техническому обслуживанию – своевременно смазывать детали, следить за корректностью работы прибора при перекачивании воды.

Некоторые виды оборудования нуждаются в регулярной проверке (обычно 1-2 раза в год) специалистов сервисного центра. В ходе проверки выявляют:

  • протечки машинного масла через трещины в контуре;
  • качество креплений и соединений;
  • уровень давления в баках и контурах;
  • неисправности в работе силовой проводки.

Монтаж теплового насоса вода-вода следует поручить обученным специалистам. Неэффективность системы чаще всего связана с ее неправильной установкой. Тепловое оборудование пригодно для эксплуатации как жителями Южный регионов, так и Северных.

Тепловые насосы для отопления небольших помещений или под ГВС

Предназначение – экономичное отопление жилых и вспомогательных помещений, обслуживание системы горячего водоснабжения. Самым низким потреблением (до 2 кВт) выделяются однофазные модели. Для защиты от скачков напряжения в сети им нужен стабилизатор. Надёжность трёхфазных, объясняется особенностями сети (нагрузка распределяется равномерно) и присутствием собственных защитных цепей, предотвращающих повреждение устройства при перепадах напряжения. Оборудование этой категории не всегда справляется с одновременным обслуживанием системы отопления и контура горячего водоснабжения.

2. NIBE F1155-6 EXP (Швеция)

Модель заявлена, как «интеллектуальное» оборудование, с автоматической настройкой под потребности объекта. Внедрена инверторная схема питания компрессора – появилась возможность настраивать выходную мощность.

Присутствие такой функции при малом числе потребителей (точки водоразбора, радиаторы отопления), делает отопление небольшого дома более выгодным, чем в случае с обычным, неинверторным ТН (у которых нет плавного пуска компрессора и выходная мощность не регулируется). Потому что у NIBE, при малых значениях мощности, тэны включаются редко, а собственное максимальное потребление теплового насоса – не более 2 кВт.

В условиях небольшого объекта шум (47 ДБ) не приемлем. Оптимальный вариант установки – отдельное помещение. Обвязку размещать на стенах не примыкающим к комнатам для отдыха.

Основные характеристики NIBE F1155-6 EXP
Характеристика Значение
Схема работы Рассол — вода
Тепловая мощность, кВт 4-16
Потребляемая электроэнергия (сеть, V/насосы, компрессор/тэны), кВт/ч 380 / 1.9 / 9
Температура теплоносителя на выходе, °С 65
Диапазон рабочей температуры первичного контура, °С 0… +35
Хладагент, тип R 407C
Вес, кг 185

Оборудование для отопительных систем типовых коттеджей под ПМЖ

Здесь представлены геотермальные, воздушные и водяные (снимающие тепловую энергию с грунтовых вод) устройства. Заявленной выходной мощности (не менее 8 кВт) достаточно чтобы обеспечить теплом все потребительские системы дачных (и ПМЖ) домов. У многих тепловых насосов этой категории есть режим охлаждения. Внедрённые инверторные схемы питания отвечают за плавный пуск компрессора, из-за его плавной работы снижается дельта (разница температур) теплоносителя. Выдерживается оптимальный режим работы контура (без лишних перегревов и выхолаживаний). Что позволяет снизить расход электроэнергии во всех режимах работы ТН. Наибольший экономический эффект – в устройствах «воздух-воздух».

5. LG Therma V AH-W096A0 (Корея)

Тепловой насос системы «воздух-вода». Прибор составляют 2 модуля: наружный забирает тепловую энергию у воздушных масс, внутренний трансформирует и передаёт её системе отопления.

Главный плюс – универсальность. Можно настроить, как для обогрева, так и для охлаждения объекта.

Недостаток этой серии LG Therma в том, что его (и всей линейки) потенциала, не хватит для нужд коттеджа, площадью более 200 м².

Важный момент: рабочие блоки двухкомпонентной системы нельзя разносить более чем на 50 м в горизонтальной плоскости и на 30 м по вертикали.

Основные характеристики LG Therma V AH-W096A0
Характеристика Значение
Схема работы Воздух — вода
Тепловая мощность (обогрев/охлаждение), кВт 9/8.6
Потребляемая электроэнергия (сеть, V/насосы, компрессор/тэны), кВт/ч 220 / 2.7 / 3.5
Температура теплоносителя на выходе, °С 60
Диапазон рабочей температуры (обогрев/охлаждение), °С -20… +30 / +5… +48
Хладагент, тип R410A
Вес (наружный/внутренний блоки), кг 56/28

Оборудование для объектов с большим потреблением тепла

Для полного обеспечения потребностей в тепловой энергии жилых и коммерческих зданий, площадью более 200 м². Дистанционное управление, каскадная эксплуатация, взаимодействие с рекуператорами и гелиосистемами – расширяют возможности пользователя в создании комфортной температуры.

10. Viessmann Vitocal 300-G WWC 110 (Германия)

В роли теплоносителя первого контура – грунтовые воды. Отсюда и постоянная температура на первом теплообменнике, и самый высокий коэффициент СОР.

Среди плюсов — вспомогательный электронагреватель небольшой мощности на первом контуре и фирменный контроллер (по сути – беспроводной пульт) для удалённого управления.

Минус — работоспособность циркуляционного насоса, состояние магистрали и теплообменника первого контура зависит от качества перегоняемых грунтовых вод. Фильтрация обязательна.

Исключить появление сложно решаемых проблем с дорогостоящим оборудованием, поможет анализ грунтовых вод. Который следует сделать до покупки теплового насоса системы «вода-вода».

Основные характеристики Viessmann Vitocal 300-G WWC 110
Характеристика Значение
Схема работы Вода — вода
Тепловая мощность, кВт 13.6
Потребляемая электроэнергия (сеть, V/насосы, компрессор/тэны), кВт/ч 400 / 2.3 / 9
Температура теплоносителя на выходе, °С 60
Диапазон рабочей температуры первичного контура, °С 0… +35
Хладагент, тип R 407 C
Вес, кг 152

Что дешевле для отопления: электричество, газ или тепловой насос?

Приведем затраты на подключение каждого из типа отопления. Для представления общей картины возьмем Московскую область. В регионах цены могут отличаться, но соотношение цен останется прежним. В расчетах принимаем, что участок «голый» — без проведеного газа и электричества.

Можно ли дешево отопить загородный дом зимой тепловым насосом «воздух-вода»

Прежде, чем рассказать об эксплуатационных затратах Bavares36 и выгоде использования теплового насоса, опишем, а это важно знать, конструктив дома:

  • Отапливаемая площадь двухэтажной «коробки» 130 кв. м.
  • «Пирог» стен — панели из арболита толщиной 3.5 см, монолитный сердечник цемент + опилки — 25 см, несъёмная опалубка — пенопласт толщиной 9 см, отделка — декоративная штукатурка 0.5 см. Итого: общая толщина стены – 38 см.
  • Перекрытие второго этажа деревянное.
  • Крыша утеплена пенопластом толщиной 14 см.
  • В доме, на первом и втором этаже, установлены большие окна в пол.

Инженерка дома:

  1. Отопление.
  • На первом этаже дома смонтировано 8 контуров низкотемпературной системы отопления — тёплый пол (6 контуров) и теплые стены (2 контура).
  • На втором этаже 6 отопительных контуров. Два контура теплых стен. Теплый пол в ванной и три контура в комнатах.
  1. Система ГВС.
  • В доме два санузла. Водопотребители — ванная, душ + мойка на кухне.
  • В системе ГВС стоит циркуляционный насос.
  • Дополнительно в доме, в санузлах, установлены полотенцесушители.

Для теплоснабжения дома используется тепловой насос «воздух-вода». Оборудование смонтировано и запущено 5 октября 2017 года. Важный нюанс! У ТН «воздух-вода» основная цена приходится на внутренний блок, т.к. в нём находятся: ТЭНы для нагрева воды для ГВС и для дополнительного нагрева теплоносителя в сильные морозы, теплоаккумулятор и прочее оборудование.

Переходим к цифрам. За шесть месяцев отопительного сезона Bavares36 потребил, по данным выделенного на ТН электросчётчика, электроэнергии:

  • октябрь — 1000 кВт*ч;
  • ноябрь -1000 кВт*ч;
  • декабрь — 1000 кВт*ч;
  • январь — 1700 кВт*ч;
  • февраль — 1900 кВт*ч;
  • март — 1900 кВт*ч.

Итого, общее потребление, с октября по март, составило 8500 кВт*ч. Тариф на электроэнергию — 2.52 руб. за 1 кВт*ч. Теперь считаем сколько заплатил пользователь за отопительный сезон включая ГВС: 8500х2.25= 21420 рублей.

За теплый период (с апреля по сентябрь включительно) счетчик теплового насоса «намотал» порядка 2500 киловатт-часов. Т.е. — 6300 руб. Итого, за календарный год, затраты на отопление и горячее водоснабжение — 27720 рублей. Я считаю, что тепловой насос «воздух-вода» отлично подходит для моих климатических условий. ТЭНы подключались периодически, при большом потреблении воды и при морозах -25 градусов Цельсия. А это всего две недели за зиму.

У меня дом площадью 250 кв. м построенный из газобетона. Толщина газосиликатных блоков – 300 мм. Стены снаружи утеплены каменной ватой толщиной 10 см и оштукатурены. На первом этаже смонтированы теплые полы. Установленная температура +23 °C. На втором этаже радиаторы. Температуру выставил +24 °C.

Сначала пользователь отапливал дом электрокотлом мощностью 24 кВт. Потом, коттеджей в поселке стало больше, и начались проблемы с подачей электричества. Vovanadm поставил твердотопливный котел мощностью 30 кВт. Но ему быстро надоело быть кочегаром. В итоге пользователь установил тепловой насос «воздух-вода». Почему? Не нужно копать или бурить землю на участке под грунтовый теплообменник. ТН потребляет 2.35 кВт в час. СОР в отопительный сезон 3. Это дешевле, чем отапливать дом электричеством. Далее пользователь хочет перейти на дневной-ночной тариф. Ниже прилагаются фото со смонтированной системой и потреблёнными киловатт-часами с конца сентября по конец октября.

У меня дом под Минском. Площадь коттеджа 230 кв. м. Стены сложены из керамзитобетонных блоков. Утепление 10 см пенопласта. Снаружи декоративная штукатурка. Вентиляции пока нет, т.к. дом еще доделывается. Стеклопакеты двухкамерные с i-стеклом. Теплый пол на первом и втором этаже. Поставил тепловой насос «воздух-вода» со счетчиком тепловой энергии. Привожу свои наблюдения.

На момент запуска ТН, на 17.10.2017, показания теплосчетчика составили 80,546 ГДж (22374 кВт*ч). Электричества — 6394 кВт*ч. Температура в доме +11 °C. На улице было +14 — +15 градусов тепла. Потом температура упала до +1 — +2 градуса. Сильных морозов не было.

На 17.12.2017. Показания теплосчетчика составили 99,34 ГДж (27595 кВт*ч). Потреблённое электричество — 7464 кВт*ч. В доме никто не живёт, поддерживается +18 °C. Т.е., за потраченные 1070 кВт*ч электричества, antxa получил 5221 киловатт-часов тепла, а СОР теплового насоса 5221/1070 = 4.88.

Дальнейшие наблюдения показали, что, с 12.01.2018 по 29.01.2018 (17 суток), ТН «воздух-вода» выработал 2281 киловатт-часов тепловой энергии, затратив на это 701 кВт*ч электроэнергии. СОР за этот период составил 3.25. Для наглядности, прилагаем график температуры воздуха в Минске за январь 2018 года. В районе дома пользователя обычно холоднее на 1-2 градуса.

С 29.01.18 по 24.02.18 (26 суток) ТН «воздух-вода» выработал 2934 киловатт-часов тепловой энергии, затратив на это 826 кВт*ч электроэнергии.
СОР за этот период составил 3.55. Погода в Минске в феврале 2018 года.

Всего, с начала отопительного сезона (130 суток), тепловым насосом выработано 12930 киловатт-часов тепловой энергии, на что затрачено 3155 кВт*ч электроэнергии.

Все вышеперечисленные дома были хорошо утеплены.

Тепловой насос «воздух-вода» — реальные факты

Этот вид теплового оборудования вызывает массу споров. Пользователи делятся на два лагеря. Одни считают, что, для отопления дома, ничего лучше не придумано. Другие полагают что, из-за дороговизны тепловых насосов (ТН) и суровых климатических условий во многих регионах РФ, первоначальные вложения не отобьются. Выгоднее положить деньги в банк, а, на полученные проценты, отапливать дом электричеством. Как всегда, истина посередине. Забегая вперёд скажем, что, в статье речь пойдёт только о тепловых насосах «воздух-вода». Сначала немного теории.

Тепловой насос — это «машина», которая забирает тепло от низкопотенциального источника и переносит его в дом.

Источники тепла для теплового насоса:

  • воздух;
  • вода;
  • земля.

Важный момент: Тепловой насос не производит тепло. Он перекачивает тепло из внешней среды к потребителю, но, чтобы тепловой насос функционировал, требуется электричество. Эффективность работы теплового насоса выражается в соотношении перекаченной тепловой энергии к потреблённой из электрической сети. Эта величина называется коэффициент трансформации теплоты COP (coefficient of performance). Если в технических характеристиках теплового насоса заявлено, что COP = 3, то, это означает, что ТН перекачает в три раза больше тепла, чем «возьмёт» электричества.

Кажется, что вот оно, — решение всех проблем — условно говоря, потратив за один час 1 кВт электричества мы, за это время, получим 3 киловатт-часа тепла для системы отопления. В действительности, т.к. речь идёт о воздушных тепловых насосах с внешним блоком, установленным снаружи дома, коэффициент трансформации за отопительный сезон будет варьироваться в зависимости от температуры на улице. В сильные морозы (-25 — -30 °C и ниже) СОР воздушника падает до единицы.

Это останавливает загородных жителей от установки тепловых насосов «воздух-вода» — оборудования, в котором перекаченное тепло используется для нагрева жидкого теплоносителя. Люди считают, что для наших условий — не южных регионов страны, лучше всего подходят геотермальные тепловые насосы с закопанным в землю грунтовым теплообменником — системой труб, уложенных горизонтально или вертикально.

Верно ли это?

Я часто сталкиваюсь с мифом, что тепловой насос «воздух-вода» неэффективен в морозы, а вот геотермальный ТН — самый то. Сравните коэффициент трансформации теплоты оборудования весной. Геотермальный контур после зимы истощен. Хорошо если там температура около 0 градусов. А вот воздух уже достаточно прогрет. Потребность в тепле уменьшается, но не пропадает летом, т.к. горячее водоснабжение нужно круглый год. Геотермальные ТН отлично подходят для регионов с суровой зимой и длительным отопительным периодом. Для Южного федерального округа и Московской области ТН «воздух-вода» показывает сравнимый с геотермальником среднегодовой СОР.

Температура -20 — -25°C и ниже в Подмосковье бывает не часто и держится всего несколько дней. В среднем, для зимы в МО, характерны -7 — -12 °C и частые оттепели с повышением температуры до -3 — 0 градусов. Поэтому, большую часть отопительного сезона, воздушный ТН будет работать с COP близким к трём единицам.

В завершении

Преимущество тепловых насосов — в высокой экономичности, поскольку для получения в час одного киловатта тепловой энергии эти установки затрачивают не более 350 ватт электроэнергии в час. Для сравнения — КПД электростанций, вырабатывающих электроэнергию путём сжигания топлива, не превышает 50%. Система теплового насоса работает в автоматическом режиме, эксплуатационные затраты в период её использования крайне низкие — необходима лишь электроэнергия для работы компрессора и насосов. Габаритные размеры установки теплового насоса примерно равны размерам бытового холодильника, уровень шумности при работе также совпадает с аналогичным параметром бытовой холодильной установки.

Тепловой насос «солевой раствор — вода»

Использовать тепловой насос можно как для получения тепловой энергии, так и для её удаления — переключением работы контуров на охлаждение, при этом тепловая энергия из помещений дома будет удаляться через внешний контур в грунт, воду или воздух.

Единственный недостаток системы отопления, основанной на тепловом насосе — её высокая стоимость. В странах Европы, а также в США и Японии, теплонасосные установки достаточно распространены — в Швеции их более полумиллиона, а в Японии и США (в особенности в штате Орегон) — несколько миллионов. Популярность тепловых насосов в этих странах объясняется их поддержкой государственными программами в виде субсидий и компенсаций домовладельцам, установившим такие установки.

Вне всякого сомнения, что в ближайшем будущем тепловые насосы перестанут быть чем-то диковинным и в России, если учитывать ежегодный рост расценок на природный газ, сегодня являющийся единственным конкурентом для тепловых насосов в отношении финансовых затрат на получение тепловой энергии.

[spoiler title=»Источники»]

  • https://kotel.guru/alternativnoe-otoplenie/teplogenerator-kavitacionnyy-dlya-otopleniya-pomescheniya.html
  • https://www.asutpp.ru/kavitacionnyj-teplogenerator.html
  • https://cdelayremont.ru/obzor-teplovyh-nasosov
  • https://zen.yandex.ru/media/rmnt/teplovoi-nasos—dlia-otopleniia-berem-teplo-u-planety-zemlia-5b6948c31cec2400a977baa2
  • https://sovet-ingenera.com/eco-energy/teplovye-nasosy/teplovoj-nasos-voda-voda.html
  • https://aif.ru/boostbook/teplovye-nasosy.html
  • https://www.forumhouse.ru/journal/articles/8680-realnyi-opyt-ekspluatacii-teplovogo-nasosa-vozduh-voda

[/spoiler]